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Abstract

An upper bound of the Hausdorff distance between planar curve and conic section can be expressed by the maximum norm of error
function from the conic section to the planar curve (Comput. Aided Geomet. Design, 14 (1997) 135-151). With respect to the maximum
norm we characterize the necessary and sufficient condition for the conic section to be optimal approximation of the given planar curve. As an
example, we approximate the cubic rational Bézier curves by conic sections using our characterization, and present the upper bound of the
Hausdorff distance numerically. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Conic spline or quadratic rational spline is a composite
curve of conic sections or quadratic rational Bézier curves
[7,9]. It is one of the most widely used curves in industry,
e.g. to design the bodies of aircraft, to design the outlines of
fonts [10,14] or to express circular arcs, spheres or tori
[11,13,16—18]. Thus conic interpolation of the given planar
curve and conic fitting of the planar data are frequently
occurring problems in CAGD.

Any conic section can be written in the standard quadratic
rational Bézier form

By(H)by + uB()b; + B,(1)b,
By(2) + uB(?) + By()

b(t) =

where b;, i = 0, 1,2, are the control-points, the weight u >
0 associated with B;(¢) is called the fullness factor of the
conic section [1,7], and By(t) = (1 — t)2, Bi(t) =2t(1 — 1)
and B,(t) = 1* are the quadratic Bernstein polynomials.
Conic approximation including G' (tangent continuous)
end-points interpolation is determined only by choosing
the weight w as shown in Fig. 1. Also, the G' end-point
interpolating conic section of the given curve can be
improved to C' end-points interpolation by change of
weights using Mdbius transformation [7].

In previous works [4,6,12,15] for conic spline approxima-
tion the weight u is chosen so that the conic passes through
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a point or the parametric middle point of the given planar
curve, or the conic spline satisfies a constrained curvature
continuity. Most of them could not yield the optimal conic
approximation having the minimal Hausdorff distance,
since it is not easy to find the Hausdorff distance between
the planar curve and the approximate conic section. Floater
[8] presented a formula for the upper bound of the Hausdorff
distance between planar curves and conic section curves.
The formula is expressed in terms of the maximum norm
of error function from the conic to the planar curve. In this
paper, with respect to the maximum norm, we characterize
the necessary and sufficient condition for the conic section
to have the minimal maximum norm. Although our charac-
terization does not yield the ‘real’ best conic approximation
which is obtained by the minimization of the Hausdorff
distance directly, the method looking for the best approxi-
mation cannot yield the explicit form of the error function so
that its algorithm is more complicated than that of our
method. As an application, we present the numerical results
of approximation for the outline of the font ‘r’ consisting of
cubic rational Bézier curves using the composite of conic
section curves.

In the following sections we characterize the necessary
and sufficient condition for the conic section to be optimal
approximation to the given planar curve with respect the
maximum norm. We apply the characterization theorem to
approximate the cubic rational spline curves by conic spline
curves, and give the numerical results. We also summarize
our work.
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Fig. 1. The relation of the conic sections in form of standard quadratic
rational Bézier curves having the control-points by, b, b,, and the weights
(fullness factor w = 0.5, 1 or 2).

2. Characterization of optimal conic approximation

In this section we present a method of approximation for
the given planar curve using conic spline in G' end-points
interpolation manner. We adopt the following procedures
for the approximation scheme in this paper.

L. Input the planar curve.

II. Subdivide the curve until each subdivided segment
can be contained in (the interior of) a triangle, say
Abgb;b,, and any conic section b(¢) having the
control-points by, by, b,, is a G' end-points interpola-
tion of the segment.

III. Repeat approximation and subdivision until the upper
bound of the Hausdorff distance between the segment
and the conic section b,(r) with the weight u
obtained by approximation method is less than
given tolerance.

IV. Merge all the approximate conic sections.

In step II or II1, if a subdivision is needed, the curve may
be subdivided at cusp, inflection point or largest-distance
point from the line byb;. Step III is the main part of approx-
imation for the planar curve using the conic spline. Thus we
may assume that the given curve p(s), s € [a, b], lies in
Abgbb,, and any conic section b(f) having the control-
points by, by, b, and the weight w is a G' end-points inter-
polation of p(s). Thus the conic approximation is deter-
mined by only the weight, and our strategy is to find the
weight u such that b,,(?) is the optimal approximation of the
given planar curve p(s) with respect to the maximum norm
presented by Floater [8].

Any point X in the plane can be written uniquely in terms of
barycentric coordinates 7y, 7, T, where 7, + 7 + 7 = 1,
with respect to Abgb/b,: x = 7)by + 7b; + T,b, provided
by, by, b, are not collinear. Thus any function defined on
Abgb b, can be expressed as a function of 7, 7|, 7,. A class
of functions fu : Abgb;b, — R is defined by [7]

JfuX®) = 4’lnm — 1

Using the function Floater [8] presents a formula for an upper
bound of the Hausdorff distance between the conic sections
and the curves contained in Abgb;b,.

Theorem 1. For any continuous curve p(s), s € [a, b],
contained in Abgbb,, the Hausdor(f distance between p(s)
and the conic section b,(t) is bounded by

1 1
= - — +b, —
dy(b,,,p) = 7 max {1, “2} Jnax | £.((5))] [by + by — 2b|

ey

Proof. See Floater [8]. O

We define the error function ¢,(s) on [a, b] by
1 1
)= max {1, 1wy + by 20,

The maximum norm of is,,(s) is the upper bound in Theorem
1. Note that the upper bound (1) overestimates the Hausdorff
distance as the weight w or the ratio of the lengths of two
legs bob, and b,b, differ from one.

As an example of curves contained in the triangle
Abgbb,, we give the quartic polynomial curve p(s) para-
meterized by

p(s) = (1 — 8s + 265 — 32s° + 135" )by — 4(—2s + 957
— 145 + 7sHb, + (105> — 245> + 155*)b,

for s € [0,1], and the conic sections b,(s) as shown in
Fig. 2a. Assuming |b, + b, — 2b,| = 2, the error functions
Pu(s), p= V2,1,1/2, are plotted in Fig. 2b, whose
uniform norms

||¢;L(S)||L°° = vren[%,)%] |¢H(S)|

equal 0.517, 0.243 and 0.246, respectively.

With respect to the maximum norm (1), we present the
necessary and sufficient condition for the conic section to be
optimal approximation of the planar curve using the
nonlinear approximation theory, that is to say, the error
function of the optimal conic approximation must be equios-
culating as many times as possible. The properties of the
class of error functions i,(s) in the following lemmas are
needed to characterize the optimal conic approximation for
the given planar curve with respect to the maximum
norm (1).

Lemma 1. Any distinct two error functions, y, (s) and
U, (8), for wy # po, have not any intersection points in
the open interval (a,b), i.e., i, (s) # ¥, (s) for all s €
(a,b) whenever u; # u,.
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Fig. 2. (a) The quartic polynomial curve p(s), s € [0, 1], contained in the triangle Abyb;b,, plotted by solid lines, and the conic sections, u = +/2, 1, 1/+/2, by
dashed lines. (b) The error function i, (s) from p(s) to the conic sections b, (1), u = V2,1, 1/4/2.

Proof. For each fixed s € (a,b), the point p(s) has the
fixed barycentric coordinate (7, 71, 7). Thus

4,u27072 — 7 for n=1

1}
I, — tfu(p(s) =
max{ w /ulPs {47072—7%/;L2 forp <1

is strictly increasing with respect to w because 7; > 0, i =
0,1,2, sois ¢,,(s). Hence ¢, (s) # i, (s) for all s € (a, b)
if w, # wy. O

Lemma 2. Foreach p and each &€ > 0, there exists 6 > 0
such that

() = Y@ < &
if |w— u/| <.
Proof. For each u, we have the following inequality:

A, (s) = Y]
b + b, —2b,|

1 1
Ju(p(s)) max {1, #«2} — fw (p(s)) max {1, M’z}

47y (max {p?, 1} — max {u%, 1})

—ﬁ(max{l, %} - max{], #})‘

< 4]max {u?, 1}max {u, 1}

1 1
max 1,—2 — max I’T
I s

Thus [, (s) — ¢(s)| converges to zero as pu' — p
uniformly, i.e. the convergence is independent of s. Hence
the assertion is obtained. [

—+

Using the lemmas above we present the necessary and
sufficient condition for the conic section to be optimal
approximation of the planar curve with respect to the maxi-
mum norm (1).

Theorem 2.  The conic section b+ (t) having the weight p *
is the optimal approximation of p(s) with respect to the
maximum norm (1) if and only if the error function i, -(s)
is equiosculating two times in [a,b], ie., W+ (s) has the
points s; and s; in (a, b) such that

[ @l = We(s1) = —h,+(52)

Furthermore, w" exists and is unique.

Proof. We adapt the idea from the earlier work by Eisele
[5] for the proof of this theorem. Let i, «(s) be equiosculat-
ing two times in [a, b]. Assume that there exists u’ such that

||l1[[p/(s)||L00 = ||¢;L*(S)||L°°

Since t,+(s) is equiosculating two times, and any error
function s, (s) is continuous, there exists sy € (a,b) such
that ,+(s9) = ,,(sp). By Lemma 1, u' = u". That is to

C

(a) (b)

Fig. 3. (a) The outline of the font ‘r’ constructed by cubic rational Bézier
segments plotted as thick lines. The polygon shown by thin lines means the
control-points of cubic (rational) Bézier curves and the circles are the
junction points of two consecutive segments. (b) The optimal conic approx-
imation of the font with respect to the maximum norm plotted as thick lines.
The polygon means the control-points of the conic sections in form of
quadratic rational curves, and the circles are the junction points of the
conic sections.
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Table 1

The control-points and weights of the cubic rational Bézier curves p;(s), i = 1,...,8, and p’] (s), j = 1,2 in standard form

Segments Control-points Weights

pi(s) (212,48) (160,52) (141,84) (141,235) (1,1.392,0.859,1)
Pa(s) (141,235) (141,352) (158,397) (188,446) (1,1.109,1.556,1)
p;(s) (188,446) (195,387) (212,352) (235,352) (1,0.865,1.021,1)
Pa(s) (235,352) (259,352) (282,376) (282,446) (1,0.978,1.261,1)
ps(s) (282,446) (282,505) (256,540) (228,540) (1,0.853,1.137,1)
Ps(s) (228,540) (189,540) (167,516) (130,465) (1,0.814,1.244.1)
p:(s) (—4,469) (36,469) (48,450) (48,422) (1,1,1,1)

Ps(s) (48,70) (48,54) (36,47) (5,47) (1,1,1,1)

pi(s) (212,48) (181.65,50.34) (167.58,57.11) (158.06,82.17) (1,1.162,1.093,1)
pis) (158.06,82.17) (147.39,110.27) (141,165.51) (141,235) (1,0.967,0.903,1)

say, b,,+(?) is the optimal conic approximation of p(s) with
respect to the maximum norm.

Conversely, assume that ,(s) is not equiosculating two
times. Without loss of generality we assume that

max §)| > | min s
sEla.b] Yu(s) Le[a,b] Yu(s)
i.e. &:= max ¢,(s) + min ,(s) is positive. By Lemma 2,

there exists & > 0 such that if [ — w'| < 8, then
l,(8) = Y@= < &

Putting ' = u — 8/2, we have

u(s) =& < Pu(s) < Puls)

for all s € [a,b]. Since P, (s) — &= —|if, [~ for all s €
[a, b], we have

[l < W s) < lpyllre

for all s € [a,b], or [l (s)|l= < [[,ll~. That is to say,
b,,(?) is not the optimal approximation with respect to the
maximum norm.

The existence of the optimal conic approximation follows
from the compactness argument, and the uniqueness follows
from Lemma 1. [

3. Numerical example

In this section we apply our characterization theorem to
approximate cubic rational spline curves by conic spline
curves. As a numerical example, the outline of the font ‘r’
consisted of cubic rational spline curves is approximated by
conic spline curves as shown in Fig. 3. The work for approx-
imation of the composite cubic Bézier curves by the compo-
site quadratic Bézier curves was done by Cox and Harris [2].
The outline of the font ‘r’ in Fig. 3a consists of seven
straight line segments, six cubic rational curves p;(s), i =
1,...,6, and two cubic curves p;(s), i = 7,8, of which
control points and weights are listed in Table 1. Using our
characterization theorem we find the optimal conic approx-
imation b, () for each cubic rational curve p;(s) with respect

Table 2

The optimal conic approximation b ,(#) for each cubic rational Bézier curve
pi(s),i=1,...,8, and p’I (s),j = 1,2 with respect to the maximum norm (1),
and the uniform norm of the error function ¢, (s)

Segments b, (1) ||¢’M(~T)”L°° Hll’p(S)HL“’
[by + b, — 2b]|

pi(s) w=1.4581 3.894 2.051x 1072
pa(s) w= 14595 1.320 1.778 x 1072
ps(s) w=0.8834 4.837x 107! 4.977%x1073
Pa(s) = 0.9887 8.079x 107! 7.687 %1073
ps(s) w=0.7380 9.197x 107! 8.484x107°
Pe(s) w= 13861 1.461 1.928x1072
p:(s) w=1.0579 3.116x 1072 4.446 x107*
ps(s) w=1.1339 7764 %1073 1.592x107*
pi(s) w= 14412 1.74%107! 423%x107°

pi(s) w=0.8787 1.28x 107! 1.96x 107°

to the maximum norm (1), and merge all the approximate
conic sections with the remaining straight line segments, as
shown in Fig. 3b.

For each conic approximation, we find the uniform norm
|4(s)||.~ of the error function, as shown in Table 2. Assuming
the tolerance to be equal to 2 in this example, the first segment
pi(s) should be subdivided. Since the segment has not any
cusp or inflection points, the segment is subdivided at the
largest-distance point from the line joining two end points.
We denote two subdivided cubic rational Bézier curves of
pi(s) by p}(s) and p%(s), whose control points and weights
in standard rational Bézier form are listed in Table 1. The
curves p}(s) and pi(s) are also approximated by the optimal
conic approximation with respect to the maximum norm and
the numerical error bounds are presented in Table 2. We also
calculate the ratio of the uniform norm to the length |b, +
b, — 2b;| as shown in Table 2. Since the upper bound (1)
overestimates the Hausdorff distance in case the weights
widely differ from one, we can see that the relative errors
[(s)||=/|bg + by — 2by| in the cases except for p|(s) are
larger than others. All of the given cubic rational Bézier
curves and the approximate conic sections obtained by our
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Fig. 4. The cubic rational Bézier curves p;(s), i = 1,..., 8, and p’1 (s),j = 1,2 plotted by solid lines with the same scale of the distance between two end points of
each curve segment, and the optimal approximate conic sections b, (7) by dashed lines, where w is listed in Table 2.

characterization are plotted in Fig. 4. We also see the biased
error of the approximation for p;(s) and pg(s). This is due to
the difference of the lengths of two legs of the conic section,
which is disregarded in formula (1) for the upper bound of the
Hausdorff distance.

The method of minimization of the Hausdorff distance
between the given planar curve and the approximate spline
curve directly was proposed by Degen [3]. As shown in

Table 3

Table 3, we compare the numerical results of the conic
approximation by our method to those of the method look-
ing for the best approximation. Even if our method yields
the conic approximations of which the Hausdorff distances
are larger than those of the best approximation, it is not easy
to find the closed form of the error function of the method
looking for the best conic approximation, so that its
algorithm is more complicated than that of our method.

Two methods of conic approximations. The second and third column are numerical results for the weights and the Hausdorff distance by our method,
respectively, and the fourth and fifth columns are those by the method looking for the best approximation

Segments b, () dy(b,,,p) Best approximation Hausdorff distance
Pis) w= 14581 2.36 w= 15422 1.70

pa(s) w= 14595 6.79% 107! w= 15225 4.61%x107!
ps(s) w=0.8834 221x107! w=0.8973 2.94x107!
pa(s) w = 0.9887 7.94% 107" = 0.9687 6.50x 107"
ps(s) w=0.7380 7.17% 107! w=0.7482 6.11x107!
Po(s) w= 13861 8.47x 107! w= 13375 6.71x 107!
p(s) w=1.0579 2.71% 1072 w=1.0580 2.66% 1072
ps(s) w=1.1339 6.59 x 1072 w=1.1342 571x107°
pi(s) w= 14412 1.12x 107! w= 14370 1.02x 107!
pis) w=0.8787 5.09% 107> w=0.8819 434x1072
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4. Conclusions

In this paper we characterized the necessary and sufficient
condition for the conic section to be optimal approximation
of the given planar curve with respect to the maximum norm
presented by Floater [8]. Using the characterization we
presented the optimal conic approximation of the cubic
rational Bézier curve, and gave the upper bound of the
Hausdorff distance between two curves numerically.
Although the error bound obtained by our method is larger
than the error obtained by the method of minimization of the
Hausdorff distance directly, the close form of the error func-
tion can be obtained in our method so that the algorithm is
more simple than the other method.
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