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Abstract

In this paper we present the error analysis for the approximation of a cylindrical helix by conic and quadratic
Bézier curves. The approximation method yiet@s conic spline ands! quadratic spline, respectively. We give
a sharp upper bound of the Hausdorff distance between the helix and each approximation curve. We also show
that the error bound has the approximation order three and monotone increases as the angle subtended to heli
increases. Furthermore, using the error bound analysis for the helix approximation by conic and quadratic Bézier
curves, we present the error bounds for the torus-like helicoid approximations by quadric surfaces and quadratic
Bézier tensor product surfaces.
0 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Circular arcs are the plane curves with constant curvature, and helix segments are the spatial curves
with constant curvature and constant torsion. Circular arcs are widely used in the fields of Computer
Aided Geometric Design and Computer Graphics. Helices can be also used importantly in the fields,
for the tool path description, the simulation of kinematic motion or the design of highways, etc. Since
circular arcs cannot be represented by polynomials in explicit form, circular arc approximations with
Bézier curves have been developed in many papers (Ahn and Kim, 1997; de Boor et al., 1987; Dokken
et al., 1990; Floater, 1995, 1997; Goldapp, 1991; Mgrken, 1990). Since helices cannot be representec
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by polynomials or rational polynomials in explicit form, the helix approximations with rational Bézier
curves have been also developed in many papers. They are focused on the rational Bézier curves of degre
three (Jehdusz, 1995), of degree three and four (Mick and Rdschel, 1990), or of degree from four to six
(Seemann, 1997). Recently, Yang (2003) also proposed the method for helix approximation using quintic
rational Bézier curves.

In this paper the helix is approximated by quadratic rational/polynomial Bézier curves. Since they are
easy to be handled and have the ability to yield tangent continuous splines, they are widely used curves
in CAD/CAM systems, e.g., to design the bodies of aircraft, to design the outlines of fonts (Ahn, 2002b;
Pavlidis, 1983; Pratt, 1985) or to express circular arcs, spheres or tori (Piegl, 1986, 1987; Piegl and Tiller,
1987; Sederberg et al., 1985; Tiller, 1983; Wilson, 1987). Thus many papers (Ahn, 2001; Cox and Harris,
1990; Farin, 1989; Floater, 1995; Schaback, 1993) relevant to the approximations of plane curves or data
by quadratic rational/polynomial Bézier curves were published. In this paper the error bound analysis for
the helix approximation by the quadratic rational/polynomial Bézier curves is presented.

Using rotation and translation any cylindrical helix could be represented by

h(@) = (rcosd, rsind, ph), 6 el[—a, a], D

for some positive real numbetis p andr. In this paper a sharp upper bound of the Hausdorff distance be-
tween the helix and each approximation cupe), ¢ € [a, b], is presented, where the Hausdorff distance
is defined (Ahn, 2001; Degen, 1992; Floater, 1995) by

dy(h,p)=max{ max min [h(©®) —p(r)

—a<O<aast<h

, max min [h@©) —p@)|}.

a<t<h —a<O<a

All upper bounds of the Hausdorff distances we present are monotone increasinigcasases so that

the subdivision schemes with equi-distance of the helix can be obtained and yiel theadratic
rational/polynomial splines. Also the upper bounds are of approximation order ¢hie®d which is
optimal order of approximation (Degen, 1992, 1993; Hollig and Koch, 1995, 1996) with spatial quadratic
rational/polynomial Bézier curves.

We also approximate the torus-like helicoid by quadric surfaces and quadratic Bézier tensor-product
surfaces. An upper bound of the Hausdorff distance between the torus-like helicoid and each approxi-
mation surface is presented in explicit form. In particular, the error bound analysis for the helix or the
helicoid approximations with the quadratic polynomial curves and surfaces are well done by the help of
Floater's error analysis (Floater, 1995), which is restated in Proposition 2 in this paper.

The paper is organized as follows. In Section 2, the helix approximations with conic and quadratic
Bézier curves are presented. In Section 3, the torus-like helicoid approximations with quadric surfaces
and quadratic Bézier surfaces are given. In Section 4, our approximation method is applied to some
examples. In Section 5, we summarize our work.

2. Helix approximationswith quadratic rational and polynomial curves

In this section the helix in Eq. (1) for @ « < /2 is approximated by quadratic rational/polynomial
Bézier curves

Z,-ZZO w;b; B; (1)

=52 B

r<1

il
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2
q@) =Y b;Biw), O0<u<l,
i=0

having the control points

bo = (x0, Yo, z0) = (r COSx, —r SN, — par),
by = (x1, y1, 21) = (r sea, 0, 0),
by = (x2, y2, 22) = (r COSw, 7 Sina, pa)

and the weightsvy = 1, w1 = cosw, w, = 1, as shown in Fig. 1, wherB; (¢) = (f)t"(l — %1 i=0,

1, 2, is the quadratic Bernstein polynomial. Since the weightcissless than one, the conicr) is an
ellipse segment (Ahn and Kim, 1998; Farin, 1998; Lee, 1987). The helix lies on the cylihger = r?,

and all points of (r) and two end pointg(0) andq(1) of g(u) lie on the cylinder. Also three points of
r(r),t=0,1/2,1, and two pointg(0) andq(l) are on the helix. Note that although both approximation
curvesr (t) andq(u) are G° end points interpolations of the helix, the approximations by the quadratic
rational/polynomial curves for each subdivided segment of the helix with equi-lengthGitedgiadratic
rational/polynomial splines. Putting

Fig. 1. (&) The helixh(9) = (rcosd, r sing, ph), 6 € [—a, ], and its projectiorhg(d) on xy-plane, whenp = r = 1 and
a = /4. (b) The conic approximation(z), ¢ € [0, 1], and its projectiorrg(¢). (c) The quadratic Bézier approximatioyu),
u € [0, 1], and its projectiomg(u). The dotted lines are control polygbgb4b,.
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2
w(t) =Y wiB;(t) = (1—1)?+2coswt (1 —1) + 12,
i=0
2
x(t) = Z w;x; B (1) = r(cosa (1 — 1)? + 2 (1 —t) + cosat?),
i=0
2
Y(O) = w;yiBi(t) =rsina(2t — 1),
i=0

2
2(t) =) wiz;B;(t) = pa(2 — 1),
i=0

we have
r(t) = (x(), y(),z(1))/w(), forte[0,1]. 2

Remark 1. In particular, forp = 0, let the curveh(9), r(¢z) andq(u) be denoted by (0), ro(z) and
Jo(u), respectively, as shown in Fig. 1. Thég(®) andrq(r) are the same circular arc with angle 2
on xy-plane. Also, each point of the hel®) is obtained by translation of each point of the circular
archg(9) by p6 in the direction ofz-axis. The quadratic rational Bézier approximatign also has the
control points obtained by translation of the control pointsif) by —pa, O, pa, in order, along the
z-axis.

The following proposition was presented by Floater (1995), which is needed to analyze the error
bounds proposed in this paper.

Proposition 2. Let aconicr(¢) and a quadratic Bézier curve () have the same control pointspg, p1, P2,
and r () have the weights 1, w, 1, in order. Then there is a reparametrisation (or one-to-one and onto
mapping) ¢ (1) suchthat r (¢ («)) — q(u) is parallel with pg — 2p; + p2 and

11— w]

|I’(t(u)) - Q(M)| < 20+ w)

IPo — 2p1 + p2l.

Proof. See Proposition 2.1 and Corollary 2.2 in (Floater, 1995).

We analyze the error bound of the helix approximation with the quadratic rational/polynomial Bézier
curves. In the following proposition, the upper bounds of the Hausdorff distababsr) anddy (h, q)
are presented.

Proposition 3. For each «, p and r, the helix approximations with the quadratic rational/polynomial
curves have the error bounds

dy(h, 1) < pE(a), 3

dn(h, @) <\ (PE@)? + (rF(@)?, ()
where
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t_l 1 /(14 cosx)(a — sina)
4727 2\ (1= cosa)(a + sina)’

E(e) = arctar? () _ 24

x(ta)  pw(ta)’
F(a) = 2sirf % seav.

Proof. Itis well known (Ahn, 2001, 2002a; Floater, 1995, 1997) that
dy(h,r) < max|h(6@)) —r ()| (5)
0<r<1

for a reparametrisation (or one-to-one and onto mappihg) 6(z). With the reparametrisatiof =
arctar(y(¢)/x(t)), Egs. (1) and (2) yield

_ rx ry y _ i Z i
h(9(t))—r(t)—(ﬁzﬂz,\/xzﬂz,parctan;) (www>

Sincex (1)? + y(1)? = r’w(r)?, we have

_ oz
h(6() —r @) = (O, 0, parctanm w(t)).

The third component of the last equation is denoted (oy. Its derivative is

y/x _ yx/ B Z/w _ Zw/ _ p(y/x _ yx/) _ FZ(Z/w _ Zw/)
5 = .

g)y=p

x2+4y2 w r2w?

The numerator of’'(¢) in the last equation is the quadratic polynomial
2pr?{2(a + sina) (1 — cosa) (* — 1) + (Sina — a cosa) }
and has zeros at

o } B } (14 cosx)(a — sina) , _} 1 /(14 cosw)(a — sina)
AT (1 — cosu)(a + sina)’ B= (1—cosw)(a + sina)

2 2 22

Since(1+ cosw) (o — sina) < (1 — cosw)(« + Sina), both zeros lie in the open interv, 1), as shown
in Fig. 2(a). Sincee(t) =0 fort =0, 1/2, 1, ande’(¢) is positive in(0, z4) and(zz, 1), e(¢) has the local
maximume(z4) and the local minimuna(zz) ande(z4) = —e(tp) is the global maximum of(¢) in the
closed interval0, 1], as shown in Fig. 2(b).

With the reparametrisatioh= arctar(y(¢) /x(t)), h() — r(¢) is parallel toz-axis, and

Ih@®) =1 ()| < e(ta) = p(metanM _ ) ) — pE(@) (6)
x(ta)  pw(ta)
forall 0 <t < 1. Thus the upper bound (3) follows from Egs. (5)—(6).
Now, we find an upper bound of the Hausdorff distadggh, q) between the helibh(9) and the
gquadratic Bézier approximatiomu). Sinceq(z) andr (z) have the same control poinitg, by, by, by
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0.2275
(a)
ta
Vi3—1
2v3
0.2075
0 o /4
0.01

-0.01 .
0 ta t tg 1
0.08
0.00691
F(a)
error
0.00331
0
0

Fig. 2. (a)t4 for a € [0, w/4]. (b) e(¢) for ¢ € [0, 1] whena = 7/4. (c) The upper boundsE (o) and+/p2E ()2 + r2F (a)2
(solid lines) withF () (dash lines) for € [0, 7 /4] whenp =r = 1.

Proposition 2, there exists a reparametrisatiens(u) such thatr (z (u)) — q(u) is parallel withbg —
2b; + b, and
1— cosx

|r(t(u)) - Q(M){ < mmo— 2b; + byl
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The vectobg — 2b; + b, = —2r(sirf a sea, 0, 0) is parallel withx-axis, and

(1 — cosu)

— 7 x2rsifasex
4(1+ cosw)

Ir(tw)) —a@)| <
= 2r sin’ % seaw =rF(a).
Thus for allu € [0, 1], with the reparametrisatioh= 6 (z (u))

Ih®) — a)| = (0B @) ~ 1 (160)) + (@) — )|
<|£p(0,0, E(@)) + r(F (), 0,0)|
=/ p2E(a)? + r2F (a)2.

Hence we obtain the upper bound (4)

As an illustration, for the given helik(9) = (cosp, sing, 0), 6 € [—x /4, /4], we obtain the conic
and the quadratic Bézier approximations as shown in Figs. 1(b)—(c). By the proposition above, the upper
bounds ofdy (h,r) anddy (h, q) are 331 x 102 and 691 x 102, respectively. We also find the real
Hausdorff distancedy (h,r) = 2.35 x 1072 anddy(h, q) = 6.07 x 1072, numerically. Although our
error bounds are larger than the real Hausdorff distances, our error bounds are obtainable in explicit
form, and the real Hausdorff distances induce high computational complexities to find.

It is clear thatF («) is a strictly increasing function and has the approximation order @ar*). In
the following proposition, verifying thak («) is strictly increasing and is of approximation order three
O(a®), we can see that the upper bounds of the Hausdorff distalag@sr) anddy (h, q) are also strictly
increasing and are of approximation order three.

Proposition 4. The error bounds of dy (h, r) and dy (h, q) are monotone increasing as « increases and
have approximation order three O(«®).

Proof. See Appendix A. O

Put f(a) = \/(pE(a))z + (rF(a))2. ThenE () and f (@) are increasing functions, and so the inverse
functions E~* and f~* exist, as shown in Fig. 2(c). Using the fact, we have a subdivision scheme for
helix approximation with the conic and the quadratic Bézier curves within tolerance.

Corollary 5. Let atolerance T be given. The piece-wise approximation of the conic and quadratic Bézier
curves are achieved within the tolerance t, by subdividing the helix with equi-distance into k-pieces

k=[ap/E7 )] and [a/fH(D)]
respectively, where [x] isthe smallest integer larger than or equal to x.
Also, we present the subdivision algorithm searching for the minimum number of pieces within toler-

ance as stated in Corollary 5. We denote the upper bound of the Hausdorff digtahce) anddy (h, q)
in Proposition 3 byw (p, r, ).
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Algorithm.
input p,r,a, t

kmin <0
kmax<= 1
op<— o
whileag > /2 oryr(p, r, ag) > 7 dO
kmin<:kmax
kmax <= 2 X kmax
a0 <= &/ kmax
end do
while kmax — kmin > 1 do
k < (kmax+ kmin)/2
oo <= a/k,;
ifag<m/20ry(p,r,ap) <t
then knmax <= k
else kmin = k
end do

output kmax

3. Toruslike helicoid approximations

Let the ‘torus-like helicoidH (0, ¢) be defined by
H(0, ¢) = ((r + p cosp) cosd, (r + p cosp) sing, p sing + pb)

for the rectangular domaif®, ¢) € [—a, o] x [B1 — B, B1 + B]. Note that the surface (9, ¢) is circular

helix in & and circular arc igp. The surfacéd (6, ¢) whenp = 0 is denoted byHq(0, ¢), which is a patch

of torus. Let the torus-like helicoid approximation with the quadratic rational/polynomial tensor-product
surfaces be denoted tR(z, s) and Q(u, v), respectively. For < o < /2, we define the quadratic
rational/polynomial Bézier surface approximations

Yo Z?=o w;;0;; B; (1) B (s)
ZI'Z:O Z?:o w;; B (1) B;(s)

2

2
Qu,v) =" "b;;B;(1)B;(s), (u,v)€[0,1]x[0,1],

i=0 j=0

R(t,s) =

, (t,s)€[0,1] x [0, 1],

having the control points
boo = ((r + p cOSBo) cosa, —(r + p COSPo) Sine, p SiNBo — par),
bo1 = ((r + p SecB cosBy) cosa, —(r + p SecB cospy) Sina, p secB sinpy — pa),
boz = ((r + p COSB2) cOS, —(r + p COSPy) Sin, pSiN2 — pa),
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= ((r + pcospo) seax, 0, psinfo),
= ((r + psecB cospy) sea, 0, p secB sinBy),
= ((r + pcospy) seax, 0, psinpy),
((r + p €0SPBp) Cosw, (r + p COSPy) Sine, p SinBy + pa)
b21 = ((r + pSecB cosBy) cosa, (r + p Sech cospy) sina, p secB sinpy + pa),
= ((r + pcospy) cosa, (r + p COSPy) Sina, p sinp, + pa),
whereﬁo = fB1 — B andB, = B1 + B, and the weights

1 cosB 1
(w;j) = (cow CoSx Cosp COSO() .
1 cosB 1
Note thatR(z, s) is conic inf and circular arc iy, and Q(u, v) are quadratic Bézier curves inandv,
respectively. LetR(z, s) when p = 0 be denoted byRy(z, s). ThenHg(0, ¢) and Ro(s, ¢) are the same
patch of torus.

Proposition 6. For each «, 8, p, r and p, the torus-like helicoid approximations with the quadratic
rational/polynomial tensor-product surfaces have the error bounds

F
di(H, Q) <\ (PE@)? + ((r + p) F@))* + ‘;g) (8)

Proof. Since both surfacely(8, ¢) and Ry(z, s) are the same torus, there exist reparametrisations
ande¢ (s) such that

Ho(0(2), ¢(s)) = Ro(t, 5)
for (z,s) € [0,1] x [0, 1]. For each fixedsg € [0, 1], with ¢g = ¢ (sg), the two isoparametric curves
Ho(8, ¢g) and Ro(z, sg) are on the same circle

X2+ y2=(r+pcospo)®,  z=psing.
Note that the curved (9, ¢o) is the helix whose points are obtained by translation of the circular arc
Ho(9, ¢o) by pb, 0 € [—a, a], in the direction ofz-axis, andR(z, sg) is the quadratic rational Bézier
curve having the control points obtained by translation of the control poing @f so) by —p«, 0 and
pa in order, alongz-axis, as stated in Remark 1. ThR$z, so) is the conic approximation of the helix
H (0, ¢o) using the same method proposed in Section 2. Hence, by the error analysis in Proposition 3, for
eachs € [0, 1] and each € [0, 1], with the reparametrisatiors= 0 (¢) and¢ = ¢ (s), H(O, ¢) — R(z, s)
is parallel toz-axis and|H(#, ¢) — R(z, s)| < pE(a) which is independent of the radiust p cosgg of
the circle. Thus we have the error bound (7) clearly.

Now, we find the upper bound (8) of the Hausdorff distance betv@n¢) and Q(u, v). At first,

we find an upper bound of the Hausdorff distadg&R, Q) betweenR(z, s) and Q(u, v), by the help of
the method of error bound analysis proposed by Floater (1995). Let the intermediate f(tfacebe
defined by

Y0 5—0 Bi(w)B;(s)wojby;
Y50 Bj(s)wo;

P(u,s)=
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which is rational (circular arc) in but non-rational (quadratic Bézier curve):dn Then for each fixed

so € [0, 1] with ¢g = ¢ (s0) two isoparametric curveR(z, so) and P (u, so) are the quadratic rational and
polynomial Bézier curves having the same control points. TAUS, so) is also the quadratic Bézier-
interpolation of the isoparametric helkk(6, ¢o) which is the same approximation method proposed in
Section 2. By Proposition 3, we have for gle [0, 1] with ¢ = ¢ (s0)

d (H(O, do), P(u, 50) </ (PE@)?+ ((r + p cospo) F (@)
so that

du(H, P) < (PE@)* + (( + ) F (@) ©)

By Egs. (10)—(11) in (Floater, 1995), the Hausdorff distasigéP, Q) between the intermediate surface
P (u, s) and the quadratic Bézier surfa@gu, v) has the upper bound

1-cosp
P — — bio — 2bi1 — byo|.
[Pu.s) = Q)| < g g max [bio — 20i1 — bia

By simple calculations

|b1g — 2b11 4+ b1s| = 2p Sin2,3 SEC,B\/SiI']2 B1+ coZ BrseCa
is larger than
Ibio — 2b;1 + bja| = 2psirf Bsecs, i=0,2.

It follows from /Sir? B1 + co B1 se@a < 1/ cosax that
1—cosp _ 2psin‘Bsecs  pF ()

|P(u, s) — O(u, v)| < 4(1+ cosp) x COSsx Cosx
and thus
pF(B)
du(P, Q) <~ Y

Sincedy(H, Q) <dyH, P)+dy (P, Q), Egs. (9)—(10) yield the error bound (8)O

4, Examples
In this section the helix and the torus-like helicoid are approximated by the quadratic rational/
polynomial curves/surfaces. Let the helix be given by
h() = (rcosd, rsing, ph), 6 [0, 2x],

forr = p =1, as shown in Fig. 3(a). Using the approximation method proposed in Section 2, we obtain
the G' quadratic rational/polynomial spline curves) andq(x) which are consisted of ‘four’ segments,
respectively, as shown in Figs. 3(b)—(c). From Proposition 3 each error bounds are as follows

dy(h,r)<0.0331 and dgy(h,q) <0.0691
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€T

Fig. 3. (a) Helix curveh(9) = (cosd, sing, 0), 6 € [0, 2x]. (b) Conic approximatiom(z). (c)—(d) Quadratic Bézier cuna(u)
using four and five segments. (b)—(d) The dotted lines are control polygons. The circles are the junction points of two consecutive
segments.

Table 1

The error bounds ofig(h,r) and dg(h,q) for
the given helix curveh() = (cos?, sind, 0), 6 €
[0, 27], with k-segmentsg = 4, 8, 16, and 32

No. segments  dg(h,r) dy(h, Q)
4 331x 1072 6.91x 1072
8 395x 103 5.04x 1073
16 487 x 1074 5.23x 1074
32 608x 107° 6.18x 10~°

Also, the error bounds for the approximations of the helix dbbgegments ofr (r) and q(u), with
k = 8,16, 32, are obtained as shown in Table 1. We can see that the approximation order of these ap-
proximation methods are thré@(«®).

Let tolerance be given by 0.05. Then the subdivision is not needed any more for the helix approxi-
mation by the conie (¢). Using the subdivision scheme in Corollary 5, the helix approximation by the
quadraticq(u) can be achieved within the tolerance by the number of segnteat®, as shown in
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Fig. 4. (a) The torus-like helicoid surfaét9, ¢), (9, ¢) € [0, 27] x [0, 7] whenp = p = 1 andr = 5. (b) The quadric surface
approximationR(z, s). (c) The quadratic Bézier surfa@(u, v). (b)—(c) Using 4x 2-patches. The dotted lines are control nets.

Fig. 3(d). They have the new upper bounds of the Hausdorff distafegs ) < 2.80 x 1072, which
are less than the tolerance.
The second example is the torus-like helicoid approximationsHIi(éf ¢) be the helicoid given by

H(0, ¢) = ((r + p cosp) cosd, (r + p cosp) sing, p sing + pb)

@,¢) €[0,27] x [0,7], for r =5 andp = p = 1, as shown in Fig. 4(a). The approximation using
quadratic rational/polynomial tensor-product surfa®s, r) and Q(u, v) with 4 by 2 patches (ird-
direction and inp-direction), as shown in Figs. 4(b)—(c), have the error bound as

dy(H, R) <0.0331 and dy(H, Q) <0451
Also, the error bounds for the approximations of the torus-like helicoid surfadg Byk, patches of

R(t,s) and Q(u, v) with k1 x ko, =4 x 4, 8 x 2 and 8x 4, are obtained as shown in Table 2.
5. Comments

In this paper we presented the approximation method of the cylindrical helix by conic, quadratic Bézier
curve, biconic and biguadratic Bézier curve. For each case we presented the error bound of the Haus-
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Table 2

The error bounds ofig (H, R) anddy(H, Q)
for the given torus-like helicoid surfade(d, ¢),
@,¢) € 10,27] x [0,7] whenp = p =1 and
r =5, usingkq x ko-patches of the approxima-
tion surfaces foky x kp =4 x 2, 4x 4, 8x 2

and 8x 4

No. patches  dgy(H, R) dg(H, Q)
4x2 331x 1072 451x 1071
4x4 331x 1072 3.70x 1071
8x2 395x 103 8.49 x 1072
8x4 395x 1073 2.26x 1072

dorff distance between the helix and each approximation curve. We also showed that all approximation
methods yield5* conic andG* quadratic splines, and have the error bounds which are of approximation
order three and monotone increasing with respect to the length of the helix. Using our method of helix
approximation, we presented the torus-like helicoid approximation by quadric surfaces and quadratic
Bézier tensor product surfaces. Using the Floater's error analysis (Floater, 1995), we presented the er-
ror bounds for the surface approximations. Although torus-like helicoid is approximated in this paper,
any sweeping surface of conic section along the helix can be also approximated by quadric surfaces anc
guadratic Bézier tensor product surfaces by the same method proposed in this paper.

To match the tangent direction of helix and quadratic rational/polynomial approximation at both end
points the bi-quadratic rational/polynomial approximation is needed. The error bound analysis for the
bi-quadratic rational/polynomial approximation can be obtained by the same method of the error bound
analysis in this paper.
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Appendix A

Proof of Proposition 4. Using the chain rule for the multi-variables function we have
de(ty) . o€

o oo

, , al’A
pE (@) = +e(ta)—.
o

t=tp
Sinces'(t4) = 0, we have

d
PE (@) = —
Jo

Py = XaY) = 12 (ZgW — ZWy)

2.2
I=tp rew t=t4g
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where the subscripts mean partial derivatives. By simple calculations, we have
2pasina(l—2t4)ta(1—t
PE (@) = pa sina( z;) a(l—14) -0
w(ta)

since O< f4 < 1/2. Thus the upper bounds (3) and (44gf(h, r) anddy (h, q), respectively, are strictly
increasing with respect .

By the Taylor expansion of the followings at= 0

¢§11
2f0f

x(ta) =r — §°‘ S UCHE

fp = +O(Ot4),

7
() = —%a n 3&’"5053 +0(@®),
7(ta) = —7 5[“ 310w,
wity) =1— éoﬂ + 0@,
y(2) _ ~/VIat+ @303+ 0D 1 1 5 )
x(t4) r—(r/3a?+ O(a*) Jv3 103 ’
2ta) _ —(p/VIa+ (p/15VIeP+ 0@ _ p P 4 L O
w(ts) 1-— (1/6)052 + O(a% \/;3, 10\/§ ’
we have
y(ta) 1( (fA)) } z(ta) 1 5

E = I _ O

. {x(m i) T et = oy TO@:

Thus the upper bounds (3) and (4)&f(h, r) anddy (h, q), respectively, have the approximation order
threeO(@®). O
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