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Abstract

In this paper we present the error analysis for the approximation of a cylindrical helix by conic and qu
Bézier curves. The approximation method yieldsG1 conic spline andG1 quadratic spline, respectively. We giv
a sharp upper bound of the Hausdorff distance between the helix and each approximation curve. We a
that the error bound has the approximation order three and monotone increases as the angle subtende
increases. Furthermore, using the error bound analysis for the helix approximation by conic and quadrati
curves, we present the error bounds for the torus-like helicoid approximations by quadric surfaces and q
Bézier tensor product surfaces.
 2005 Elsevier B.V. All rights reserved.

Keywords: Helix; Conic; Quadratic Bézier curve; Helicoid surface; Quadric surface; Quadratic Bézier surface; Hausdor
distance;G1 interpolation

1. Introduction

Circular arcs are the plane curves with constant curvature, and helix segments are the spatia
with constant curvature and constant torsion. Circular arcs are widely used in the fields of Co
Aided Geometric Design and Computer Graphics. Helices can be also used importantly in the
for the tool path description, the simulation of kinematic motion or the design of highways, etc.
circular arcs cannot be represented by polynomials in explicit form, circular arc approximation
Bézier curves have been developed in many papers (Ahn and Kim, 1997; de Boor et al., 1987;
et al., 1990; Floater, 1995, 1997; Goldapp, 1991; Mørken, 1990). Since helices cannot be repr
E-mail address: ahn@chosun.ac.kr (Y.J. Ahn).
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by polynomials or rational polynomials in explicit form, the helix approximations with rational Bé
curves have been also developed in many papers. They are focused on the rational Bézier curves
three (Jeháusz, 1995), of degree three and four (Mick and Röschel, 1990), or of degree from fou
(Seemann, 1997). Recently, Yang (2003) also proposed the method for helix approximation using
rational Bézier curves.

In this paper the helix is approximated by quadratic rational/polynomial Bézier curves. Since th
easy to be handled and have the ability to yield tangent continuous splines, they are widely use
in CAD/CAM systems, e.g., to design the bodies of aircraft, to design the outlines of fonts (Ahn, 2
Pavlidis, 1983; Pratt, 1985) or to express circular arcs, spheres or tori (Piegl, 1986, 1987; Piegl an
1987; Sederberg et al., 1985; Tiller, 1983; Wilson, 1987). Thus many papers (Ahn, 2001; Cox and
1990; Farin, 1989; Floater, 1995; Schaback, 1993) relevant to the approximations of plane curves
by quadratic rational/polynomial Bézier curves were published. In this paper the error bound anal
the helix approximation by the quadratic rational/polynomial Bézier curves is presented.

Using rotation and translation any cylindrical helix could be represented by

h(θ) = (r cosθ, r sinθ,pθ), θ ∈ [−α,α], (1)

for some positive real numbersα, p andr . In this paper a sharp upper bound of the Hausdorff distanc
tween the helix and each approximation curvep(t), t ∈ [a, b], is presented, where the Hausdorff distan
is defined (Ahn, 2001; Degen, 1992; Floater, 1995) by

dH (h,p) = max
{

max
−α�θ�α

min
a�t�b

∣∣h(θ) − p(t)
∣∣, max

a�t�b
min

−α�θ�α

∣∣h(θ) − p(t)
∣∣}.

All upper bounds of the Hausdorff distances we present are monotone increasing asα increases so tha
the subdivision schemes with equi-distance of the helix can be obtained and yield theG1 quadratic
rational/polynomial splines. Also the upper bounds are of approximation order threeO(α3) which is
optimal order of approximation (Degen, 1992, 1993; Höllig and Koch, 1995, 1996) with spatial qua
rational/polynomial Bézier curves.

We also approximate the torus-like helicoid by quadric surfaces and quadratic Bézier tensor-
surfaces. An upper bound of the Hausdorff distance between the torus-like helicoid and each a
mation surface is presented in explicit form. In particular, the error bound analysis for the helix
helicoid approximations with the quadratic polynomial curves and surfaces are well done by the
Floater’s error analysis (Floater, 1995), which is restated in Proposition 2 in this paper.

The paper is organized as follows. In Section 2, the helix approximations with conic and qu
Bézier curves are presented. In Section 3, the torus-like helicoid approximations with quadric s
and quadratic Bézier surfaces are given. In Section 4, our approximation method is applied t
examples. In Section 5, we summarize our work.

2. Helix approximations with quadratic rational and polynomial curves

In this section the helix in Eq. (1) for 0< α < π/2 is approximated by quadratic rational/polynom
Bézier curves

r(t) =
∑2

i=0 wibiBi(t)∑2 , 0� t � 1,
i=0 wiBi(t)
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f
ion
ratic
q(u) =
2∑

i=0

biBi(u), 0� u � 1,

having the control points

b0 = (x0, y0, z0) = (r cosα,−r sinα,−pα),

b1 = (x1, y1, z1) = (r secα,0,0),

b2 = (x2, y2, z2) = (r cosα, r sinα,pα)

and the weightsw0 = 1, w1 = cosα, w2 = 1, as shown in Fig. 1, whereBi(t) = (2
i

)
t i(1 − t)2−i , i = 0,

1,2, is the quadratic Bernstein polynomial. Since the weight cosα is less than one, the conicr(t) is an
ellipse segment (Ahn and Kim, 1998; Farin, 1998; Lee, 1987). The helix lies on the cylinderx2+y2 = r2,
and all points ofr(t) and two end pointsq(0) andq(1) of q(u) lie on the cylinder. Also three points o
r(t), t = 0,1/2,1, and two pointsq(0) andq(1) are on the helix. Note that although both approximat
curvesr(t) andq(u) areG0 end points interpolations of the helix, the approximations by the quad
rational/polynomial curves for each subdivided segment of the helix with equi-length yieldG1 quadratic
rational/polynomial splines. Putting

Fig. 1. (a) The helixh(θ) = (r cosθ, r sinθ,pθ), θ ∈ [−α,α], and its projectionh0(θ) on xy-plane, whenp = r = 1 and
α = π/4. (b) The conic approximationr(t), t ∈ [0,1], and its projectionr0(t). (c) The quadratic Bézier approximationq(u),
u ∈ [0,1], and its projectionq0(u). The dotted lines are control polygonb0b1b2.



554 Y.J. Ahn / Computer Aided Geometric Design 22 (2005) 551–565
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e error

ézier
w(t) =
2∑

i=0

wiBi(t) = (1− t)2 + 2cosαt(1− t) + t2,

x(t) =
2∑

i=0

wixiBi(t) = r
(
cosα(1− t)2 + 2t (1− t) + cosαt2

)
,

y(t) =
2∑

i=0

wiyiBi(t) = r sinα(2t − 1),

z(t) =
2∑

i=0

wiziBi(t) = pα(2t − 1),

we have

r(t) = (
x(t), y(t), z(t)

)
/w(t), for t ∈ [0,1]. (2)

Remark 1. In particular, forp = 0, let the curvesh(θ), r(t) andq(u) be denoted byh0(θ), r0(t) and
q0(u), respectively, as shown in Fig. 1. Thenh0(θ) andr0(t) are the same circular arc with angle 2α

on xy-plane. Also, each point of the helixh(θ) is obtained by translation of each point of the circu
arch0(θ) by pθ in the direction ofz-axis. The quadratic rational Bézier approximationr(t) also has the
control points obtained by translation of the control points ofr0(t) by −pα, 0, pα, in order, along the
z-axis.

The following proposition was presented by Floater (1995), which is needed to analyze th
bounds proposed in this paper.

Proposition 2. Let a conic r(t) and a quadratic Bézier curve q(u) have the same control points p0,p1,p2,
and r(t) have the weights 1, w, 1, in order. Then there is a reparametrisation (or one-to-one and onto
mapping) t (u) such that r(t (u)) − q(u) is parallel with p0 − 2p1 + p2 and∣∣r(t (u)

) − q(u)
∣∣ � |1− w|

4(1+ w)
|p0 − 2p1 + p2|.

Proof. See Proposition 2.1 and Corollary 2.2 in (Floater, 1995).�
We analyze the error bound of the helix approximation with the quadratic rational/polynomial B

curves. In the following proposition, the upper bounds of the Hausdorff distancesdH (h, r) anddH (h,q)

are presented.

Proposition 3. For each α, p and r , the helix approximations with the quadratic rational/polynomial
curves have the error bounds

dH (h, r) � pE(α), (3)

dH (h,q) �
√(

pE(α)
)2 + (

rF (α)
)2

, (4)

where
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l

tA = 1

2
− 1

2

√
(1+ cosα)(α − sinα)

(1− cosα)(α + sinα)
,

E(α) = arctan
y(tA)

x(tA)
− z(tA)

pw(tA)
,

F (α) = 2sin4 α

2
secα.

Proof. It is well known (Ahn, 2001, 2002a; Floater, 1995, 1997) that

dH (h, r) � max
0�t�1

∣∣h(
θ(t)

) − r(t)
∣∣ (5)

for a reparametrisation (or one-to-one and onto mapping)θ = θ(t). With the reparametrisationθ =
arctan(y(t)/x(t)), Eqs. (1) and (2) yield

h
(
θ(t)

) − r(t) =
(

rx√
x2 + y2

,
ry√

x2 + y2
,p arctan

y

x

)
−

(
x

w
,

y

w
,

z

w

)
.

Sincex(t)2 + y(t)2 = r2w(t)2, we have

h
(
θ(t)

) − r(t) =
(

0,0,p arctan
y(t)

x(t)
− z(t)

w(t)

)
.

The third component of the last equation is denoted byε(t). Its derivative is

ε′(t) = p
y ′x − yx ′

x2 + y2
− z′w − zw′

w2
= p(y ′x − yx ′) − r2(z′w − zw′)

r2w2
.

The numerator ofε′(t) in the last equation is the quadratic polynomial

2pr2
{
2(α + sinα)(1− cosα)(t2 − t) + (sinα − α cosα)

}
and has zeros at

tA = 1

2
− 1

2

√
(1+ cosα)(α − sinα)

(1− cosα)(α + sinα)
, tB = 1

2
+ 1

2

√
(1+ cosα)(α − sinα)

(1− cosα)(α + sinα)
.

Since(1+ cosα)(α − sinα) < (1− cosα)(α + sinα), both zeros lie in the open interval(0,1), as shown
in Fig. 2(a). Sinceε(t) = 0 for t = 0,1/2,1, andε′(t) is positive in(0, tA) and(tB,1), ε(t) has the loca
maximumε(tA) and the local minimumε(tB) andε(tA) = −ε(tB) is the global maximum ofε(t) in the
closed interval[0,1], as shown in Fig. 2(b).

With the reparametrisationθ = arctan(y(t)/x(t)), h(θ) − r(t) is parallel toz-axis, and

∣∣h(θ) − r(t)
∣∣ � ε(tA) = p

(
arctan

y(tA)

x(tA)
− z(tA)

pw(tA)

)
= pE(α) (6)

for all 0� t � 1. Thus the upper bound (3) follows from Eqs. (5)–(6).
Now, we find an upper bound of the Hausdorff distancedH (h,q) between the helixh(θ) and the

quadratic Bézier approximationq(u). Sinceq(u) andr(t) have the same control pointsb ,b ,b , by
0 1 2



556 Y.J. Ahn / Computer Aided Geometric Design 22 (2005) 551–565
Fig. 2. (a)tA for α ∈ [0,π/4]. (b) ε(t) for t ∈ [0,1] whenα = π/4. (c) The upper boundspE(α) and
√

p2E(α)2 + r2F(α)2

(solid lines) withF(α) (dash lines) forα ∈ [0,π/4] whenp = r = 1.

Proposition 2, there exists a reparametrisationt = t (u) such thatr(t (u)) − q(u) is parallel withb0 −
2b1 + b2 and∣∣r(t (u)

) − q(u)
∣∣ � 1− cosα

4(1+ cosα)
|b0 − 2b1 + b2|.
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The vectorb0 − 2b1 + b2 = −2r(sin2 α secα,0,0) is parallel withx-axis, and

∣∣r(t (u)
) − q(u)

∣∣ � (1− cosα)

4(1+ cosα)
× 2r sin2 α secα

= 2r sin4 α

2
secα = rF (α).

Thus for allu ∈ [0,1], with the reparametrisationθ = θ(t (u))∣∣h(θ) − q(u)
∣∣ = ∣∣(h

(
θ
(
t (u)

)) − r
(
t (u)

)) + (
r
(
t (u)

) − q(u)
)∣∣

�
∣∣±p

(
0,0,E(α)

) + r
(
F(α),0,0

)∣∣
=

√
p2E(α)2 + r2F(α)2.

Hence we obtain the upper bound (4).�
As an illustration, for the given helixh(θ) = (cosθ,sinθ, θ), θ ∈ [−π/4,π/4], we obtain the conic

and the quadratic Bézier approximations as shown in Figs. 1(b)–(c). By the proposition above, th
bounds ofdH (h, r) anddH (h,q) are 3.31× 10−2 and 6.91× 10−2, respectively. We also find the re
Hausdorff distancesdH (h, r) = 2.35× 10−2 and dH (h,q) = 6.07× 10−2, numerically. Although our
error bounds are larger than the real Hausdorff distances, our error bounds are obtainable in
form, and the real Hausdorff distances induce high computational complexities to find.

It is clear thatF(α) is a strictly increasing function and has the approximation order fourO(α4). In
the following proposition, verifying thatE(α) is strictly increasing and is of approximation order th
O(α3), we can see that the upper bounds of the Hausdorff distancesdH (h, r) anddH (h,q) are also strictly
increasing and are of approximation order three.

Proposition 4. The error bounds of dH (h, r) and dH (h,q) are monotone increasing as α increases and
have approximation order three O(α3).

Proof. See Appendix A. �
Putf (α) = √

(pE(α))2 + (rF (α))2. ThenE(α) andf (α) are increasing functions, and so the inve
functionsE−1 andf −1 exist, as shown in Fig. 2(c). Using the fact, we have a subdivision schem
helix approximation with the conic and the quadratic Bézier curves within tolerance.

Corollary 5. Let a tolerance τ be given. The piece-wise approximation of the conic and quadratic Bézier
curves are achieved within the tolerance τ , by subdividing the helix with equi-distance into k-pieces

k = ⌈
αp/E−1(τ )

⌉
and

⌈
α/f −1(τ )

⌉
respectively, where �x� is the smallest integer larger than or equal to x.

Also, we present the subdivision algorithm searching for the minimum number of pieces within
ance as stated in Corollary 5. We denote the upper bound of the Hausdorff distancedH (h, r) anddH (h,q)

in Proposition 3 byψ(p, r,α).
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Algorithm.
input p, r , α, τ

kmin ⇐ 0
kmax ⇐ 1
α0 ⇐ α

while α0 � π/2 orψ(p, r,α0) > τ do
kmin ⇐ kmax

kmax ⇐ 2× kmax

α0 ⇐ α/kmax

end do
while kmax− kmin > 1 do

k ⇐ (kmax+ kmin)/2
α0 ⇐ α/k;
if α0 < π/2 orψ(p, r,α0) < τ

then kmax ⇐ k

else kmin ⇐ k

end do

output kmax

3. Torus-like helicoid approximations

Let the ‘torus-like helicoid’H(θ,φ) be defined by

H(θ,φ) = (
(r + ρ cosφ)cosθ, (r + ρ cosφ)sinθ,ρ sinφ + pθ

)
for the rectangular domain(θ,φ) ∈ [−α,α] × [β1 − β,β1 + β]. Note that the surfaceH(θ,φ) is circular
helix in θ and circular arc inφ. The surfaceH(θ,φ) whenp = 0 is denoted byH0(θ,φ), which is a patch
of torus. Let the torus-like helicoid approximation with the quadratic rational/polynomial tensor-pr
surfaces be denoted byR(t, s) and Q(u,v), respectively. For 0< α < π/2, we define the quadrat
rational/polynomial Bézier surface approximations

R(t, s) =
∑2

i=0

∑2
j=0 wij bijBi(t)Bj (s)∑2

i=0

∑2
j=0 wijBi(t)Bj (s)

, (t, s) ∈ [0,1] × [0,1],

Q(u, v) =
2∑

i=0

2∑
j=0

bijBi(t)Bj (s), (u, v) ∈ [0,1] × [0,1],

having the control points

b00 = (
(r + ρ cosβ0)cosα,−(r + ρ cosβ0)sinα,ρ sinβ0 − pα

)
,

b01 = (
(r + ρ secβ cosβ1)cosα,−(r + ρ secβ cosβ1)sinα,ρ secβ sinβ1 − pα

)
,

b = (
(r + ρ cosβ )cosα,−(r + ρ cosβ )sinα,ρ sinβ − pα

)
,
02 2 2 2
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s
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n 3, for
b10 = (
(r + ρ cosβ0)secα,0, ρ sinβ0

)
,

b11 = (
(r + ρ secβ cosβ1)secα,0, ρ secβ sinβ1

)
,

b12 = (
(r + ρ cosβ2)secα,0, ρ sinβ2

)
,

b20 = (
(r + ρ cosβ0)cosα, (r + ρ cosβ0)sinα,ρ sinβ0 + pα

)
,

b21 = (
(r + ρ secβ cosβ1)cosα, (r + ρ secβ cosβ1)sinα,ρ secβ sinβ1 + pα

)
,

b22 = (
(r + ρ cosβ2)cosα, (r + ρ cosβ2)sinα,ρ sinβ2 + pα

)
,

whereβ0 = β1 − β andβ2 = β1 + β, and the weights

(wij ) =
( 1 cosβ 1

cosα cosα cosβ cosα
1 cosβ 1

)
.

Note thatR(t, s) is conic int and circular arc ins, andQ(u,v) are quadratic Bézier curves inu andv,
respectively. LetR(t, s) whenp = 0 be denoted byR0(t, s). ThenH0(θ,φ) andR0(s, t) are the same
patch of torus.

Proposition 6. For each α, β , p, r and ρ, the torus-like helicoid approximations with the quadratic
rational/polynomial tensor-product surfaces have the error bounds

dH (H,R) � pE(α), (7)

dH (H,Q) �
√(

pE(α)
)2 + (

(r + ρ)F (α)
)2 + ρF(β)

cosα
. (8)

Proof. Since both surfaceH0(θ,φ) andR0(t, s) are the same torus, there exist reparametrisationsθ(t)

andφ(s) such that

H0
(
θ(t), φ(s)

) = R0(t, s)

for (t, s) ∈ [0,1] × [0,1]. For each fixeds0 ∈ [0,1], with φ0 = φ(s0), the two isoparametric curve
H0(θ,φ0) andR0(t, s0) are on the same circle

x2 + y2 = (r + ρ cosφ0)
2, z = ρ sinφ0.

Note that the curveH(θ,φ0) is the helix whose points are obtained by translation of the circula
H0(θ,φ0) by pθ , θ ∈ [−α,α], in the direction ofz-axis, andR(t, s0) is the quadratic rational Bézie
curve having the control points obtained by translation of the control points ofR0(t, s0) by −pα, 0 and
pα in order, alongz-axis, as stated in Remark 1. ThusR(t, s0) is the conic approximation of the hel
H(θ,φ0) using the same method proposed in Section 2. Hence, by the error analysis in Propositio
eachs ∈ [0,1] and eacht ∈ [0,1], with the reparametrisationsθ = θ(t) andφ = φ(s), H(θ,φ) − R(t, s)

is parallel toz-axis and|H(θ,φ) − R(t, s)| � pE(α) which is independent of the radiusr + ρ cosφ0 of
the circle. Thus we have the error bound (7) clearly.

Now, we find the upper bound (8) of the Hausdorff distance betweenH(θ,φ) andQ(u,v). At first,
we find an upper bound of the Hausdorff distancedH (R,Q) betweenR(t, s) andQ(u,v), by the help of
the method of error bound analysis proposed by Floater (1995). Let the intermediate surfaceP(u, s) be
defined by

P(u, s) =
∑2

i=0

∑2
j=0 Bi(u)Bj (s)w0j bij∑2
j=0 Bj(s)w0j
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which is rational (circular arc) ins but non-rational (quadratic Bézier curve) inu. Then for each fixed
s0 ∈ [0,1] with φ0 = φ(s0) two isoparametric curvesR(t, s0) andP(u, s0) are the quadratic rational an
polynomial Bézier curves having the same control points. ThusP(u, s0) is also the quadratic Bézie
interpolation of the isoparametric helixH(θ,φ0) which is the same approximation method propose
Section 2. By Proposition 3, we have for alls0 ∈ [0,1] with φ0 = φ(s0)

dH

(
H(θ,φ0),P (u, s0)

)
�

√(
pE(α)

)2 + (
(r + ρ cosφ0)F (α)

)2

so that

dH (H,P ) �
√(

pE(α)
)2 + (

(r + ρ)F (α)
)2

. (9)

By Eqs. (10)–(11) in (Floater, 1995), the Hausdorff distancedH (P,Q) between the intermediate surfa
P(u, s) and the quadratic Bézier surfaceQ(u,v) has the upper bound∣∣P(u, s) − Q(u,v)

∣∣ � 1− cosβ

4(1+ cosβ)
max

i=0,1,2
|bi0 − 2bi1 − bi2|.

By simple calculations

|b10 − 2b11 + b12| = 2ρ sin2 β secβ
√

sin2 β1 + cos2 β1 sec2 α

is larger than

|bi0 − 2bi1 + bi2| = 2ρ sin2 β secβ, i = 0,2.

It follows from
√

sin2 β1 + cos2 β1 sec2 α � 1/cosα that

∣∣P(u, s) − Q(u,v)
∣∣ � 1− cosβ

4(1+ cosβ)
× 2ρ sin2 β secβ

cosα
= ρF(β)

cosα

and thus

dH (P,Q) � ρF(β)

cosα
. (10)

SincedH (H,Q) � dH (H,P ) + dH (P,Q), Eqs. (9)–(10) yield the error bound (8).�

4. Examples

In this section the helix and the torus-like helicoid are approximated by the quadratic ra
polynomial curves/surfaces. Let the helix be given by

h(θ) = (r cosθ, r sinθ,pθ), θ ∈ [0,2π ],
for r = p = 1, as shown in Fig. 3(a). Using the approximation method proposed in Section 2, we
theG1 quadratic rational/polynomial spline curvesr(t) andq(u) which are consisted of ‘four’ segment
respectively, as shown in Figs. 3(b)–(c). From Proposition 3 each error bounds are as follows

d (h, r) � 0.0331 and d (h,q) � 0.0691.
H H
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secutive

ese ap-

pproxi-
the
Fig. 3. (a) Helix curveh(θ) = (cosθ,sinθ, θ), θ ∈ [0,2π ]. (b) Conic approximationr(t). (c)–(d) Quadratic Bézier curveq(u)

using four and five segments. (b)–(d) The dotted lines are control polygons. The circles are the junction points of two con
segments.

Table 1
The error bounds ofdH (h, r) and dH (h,q) for
the given helix curveh(θ) = (cosθ,sinθ, θ), θ ∈
[0,2π ], with k-segments,k = 4,8,16, and 32

No. segments dH (h, r) dH (h,q)

4 3.31× 10−2 6.91× 10−2

8 3.95× 10−3 5.04× 10−3

16 4.87× 10−4 5.23× 10−4

32 6.08× 10−5 6.18× 10−5

Also, the error bounds for the approximations of the helix byk-segments ofr(t) and q(u), with
k = 8,16,32, are obtained as shown in Table 1. We can see that the approximation order of th
proximation methods are threeO(α3).

Let tolerance be given by 0.05. Then the subdivision is not needed any more for the helix a
mation by the conicr(t). Using the subdivision scheme in Corollary 5, the helix approximation by
quadraticq(u) can be achieved within the tolerance by the number of segmentsk = 5, as shown in



562 Y.J. Ahn / Computer Aided Geometric Design 22 (2005) 551–565

e
ts.

ing

Bézier
e Haus-
Fig. 4. (a) The torus-like helicoid surfaceH(θ,φ), (θ,φ) ∈ [0,2π ] × [0,π ] whenp = ρ = 1 andr = 5. (b) The quadric surfac
approximationR(t, s). (c) The quadratic Bézier surfaceQ(u,v). (b)–(c) Using 4× 2-patches. The dotted lines are control ne

Fig. 3(d). They have the new upper bounds of the Hausdorff distancesdH (h,q) � 2.80× 10−2, which
are less than the tolerance.

The second example is the torus-like helicoid approximations. LetH(θ,φ) be the helicoid given by

H(θ,φ) = (
(r + ρ cosφ)cosθ, (r + ρ cosφ)sinθ,ρ sinφ + pθ

)
(θ,φ) ∈ [0,2π ] × [0,π ], for r = 5 andρ = p = 1, as shown in Fig. 4(a). The approximation us
quadratic rational/polynomial tensor-product surfacesR(s, t) and Q(u,v) with 4 by 2 patches (inθ -
direction and inφ-direction), as shown in Figs. 4(b)–(c), have the error bound as

dH (H,R) � 0.0331 and dH (H,Q) � 0.451.

Also, the error bounds for the approximations of the torus-like helicoid surface byk1 × k2 patches of
R(t, s) andQ(u,v) with k1 × k2 = 4× 4, 8× 2 and 8× 4, are obtained as shown in Table 2.

5. Comments

In this paper we presented the approximation method of the cylindrical helix by conic, quadratic
curve, biconic and biquadratic Bézier curve. For each case we presented the error bound of th
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Table 2
The error bounds ofdH (H,R) and dH (H,Q)

for the given torus-like helicoid surfaceH(θ,φ),
(θ,φ) ∈ [0,2π ] × [0,π ] when p = ρ = 1 and
r = 5, usingk1 × k2-patches of the approxima-
tion surfaces fork1 × k2 = 4 × 2, 4× 4, 8× 2
and 8× 4

No. patches dH (H,R) dH (H,Q)

4× 2 3.31× 10−2 4.51× 10−1

4× 4 3.31× 10−2 3.70× 10−1

8× 2 3.95× 10−3 8.49× 10−2

8× 4 3.95× 10−3 2.26× 10−2

dorff distance between the helix and each approximation curve. We also showed that all approx
methods yieldG1 conic andG1 quadratic splines, and have the error bounds which are of approxim
order three and monotone increasing with respect to the length of the helix. Using our method o
approximation, we presented the torus-like helicoid approximation by quadric surfaces and qu
Bézier tensor product surfaces. Using the Floater’s error analysis (Floater, 1995), we presente
ror bounds for the surface approximations. Although torus-like helicoid is approximated in this
any sweeping surface of conic section along the helix can be also approximated by quadric surfa
quadratic Bézier tensor product surfaces by the same method proposed in this paper.

To match the tangent direction of helix and quadratic rational/polynomial approximation at bo
points the bi-quadratic rational/polynomial approximation is needed. The error bound analysis
bi-quadratic rational/polynomial approximation can be obtained by the same method of the error
analysis in this paper.
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Appendix A

Proof of Proposition 4. Using the chain rule for the multi-variables function we have

pE′(α) = ∂ε(tA)

∂α
= ∂ε

∂α

∣∣∣∣
t=tA

+ ε′(tA)
∂tA

∂α
.

Sinceε′(tA) = 0, we have

pE′(α) = ∂ε
∣∣∣∣ = p(xyα − xαy) − r2(zαw − zwα)

2 2

∣∣∣∣ ,

∂α t=tA

r w t=tA
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where the subscripts mean partial derivatives. By simple calculations, we have

pE′(α) = 2pα sinα(1− 2tA)tA(1− tA)

w(tA)2
> 0

since 0< tA < 1/2. Thus the upper bounds (3) and (4) ofdH (h, r) anddH (h,q), respectively, are strictly
increasing with respect toα.

By the Taylor expansion of the followings atα = 0

tA =
√

3− 1

2
√

3
+ 1

30
√

3
α2 +O(α4),

x(tA) = r − r

3
α2 +O(α4),

y(tA) = − r√
3
α + 7r

30
√

3
α3 +O(α5),

z(tA) = − p√
3
α + p

15
√

3
α3 +O(α5),

w(tA) = 1− 1

6
α2 +O(α4),

y(tA)

x(tA)
= −(r/

√
3)α + (7r/30

√
3)α3 +O(α5)

r − (r/3)α2 +O(α4)
= − 1√

3
α − 1

10
√

3
α3 +O(α5),

z(tA)

w(tA)
= −(p/

√
3)α + (p/15

√
3)α3 +O(α5)

1− (1/6)α2 +O(α4)
= − p√

3
α − p

10
√

3
α3 +O(α5),

we have

E(α) =
{

y(tA)

x(tA)
− 1

3

(
y(tA)

x(tA)

)3

+ · · ·
}

− z(tA)

pw(tA)
= 1

9
√

3
α3 +O(α5).

Thus the upper bounds (3) and (4) ofdH (h, r) anddH (h,q), respectively, have the approximation ord
threeO(α3). �
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