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Abstract

In this paper, Newton-Cotes cubature rules are extended to (d + 1)-pencil lattices
over simplices and simplicial partitions. The closed form of the cubature rules as
well as the error term are determined. Further, the basic cubature rules can be
combined with an adaptive algorithm over simplicial partitions. The key point of
the algorithm is a subdivision step that refines a (d+1)-pencil lattice over a simplex
to its subsimplices. If the number of function evaluations is crucial, the additional
freedom provided by (d + 1)-pencil lattices may be used to decrease it significantly.
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1 Introduction

The multivariate integration has been quite a challenge in numerical anal-
ysis since integrals, encountered in many mathematical models, can rarely
be calculated analytically. Multivariate integration comes across in practical
applications, such as finite elements methods, statistical models, computer
graphics, financial mathematics, etc. A cubature rule over a simplex 4 ⊂ Rd

of the form

Q4(f) =
∑
γ

ωγf(Xγ), Xγ ∈ 4, (1)

where f(Xγ) are the values of the function f at points Xγ , ωγ are the weights,
and γ is a multiindex, is one of the usual ways how to approximate a multi-
variate integral over a compact domain in Rd. The choice of points Xγ and
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weights ωγ usually does not depend on the function f . There are several cri-
teria to classify cubature rules based on their behavior for specific classes of
functions (see [3], e.g.). Probably the most often used rules of the form (1) are
polynomial-based ones, which are exact for a particular set of polynomials. In
this case, the points Xγ should provide a basis for the correct interpolation
with the polynomial class concerned. If integration points are to be deter-
mined in advance, as is the case with Newton-Cotes cubature rules, this is not
a trivial job in the multivariate case. A quite well-known approach to obtain
points that admit correct interpolation is to use lattices. The principal lat-
tices, where the points are obtained as intersections of d+1 pencils of parallel
hyperplanes ([10], [2]), lead to the Newton-Cotes cubature rules that can be
viewed as a straightforward generalization of the equidistant univariate case.
These Newton-Cotes rules can already be found in [12]. Principal lattices have
been further generalized to intersections of more general hyperplanes. These
lattices are known as (d + 1)-pencil lattices of order n and were introduced in
[9]. Even though generalized lattices are nowadays a quite important item in
multivariate polynomial interpolation, since they admit correct interpolation
problems (see [1], e.g.), their impact on Newton-Cotes numerical integration
is not well understood. This is perhaps due to the fact that it was not clear
until [7] how to continuously extend a lattice from a particular simplex to its
neighbours.

In this paper, Newton-Cotes cubature rules over principal lattices are carried
over to (d + 1)-pencil lattices. The generalization is based upon a simple form
of the Lagrange basis polynomials in the barycentric representation. A similar
form of the Newton basis polynomials enables us to derive a closed form of
the error remainder too. Moreover, by some recent results ([5], [6], [7], [13]), a
(d+1)-pencil lattice can be extended from a simplex to a simplicial partition,
such that the local lattices agree on common faces of the underlying simplices.
Thus it is possible to efficiently extend the rules to (d + 1)-pencil lattices on
simplicial partitions. Since usually most of the lattice points lie on facets of
simplices, it is therefore very important to evaluate the function f at these
points only once. As a bonus, if the function as a mapping is known too, we
can improve the approximation by using an adaptive algorithm. Therefore
a subdivision step that refines a (d + 1)-pencil lattice over a simplex to its
subsimplices is presented. Moreover, if the number of function evaluations is
at stake, the additional freedom of (d + 1)-pencil lattices can be exploited to
obtain a more efficient adaptive algorithm over simplicial partitions.

The extended Newton-Cotes cubature rules are useful in many practical ap-
plications. Suppose that the function values over a (d + 1)-pencil lattice on a
simplicial partition are known in advance (for example, they were computed
for the construction of a continuous interpolant over the lattice). Then these
values should be used also for the numerical integration over the simplicial
partition. We can further apply an adaptive algorithm based on the extended
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Newton-Cotes rules in order to improve the obtained approximation. More-
over, the cubature rules over (d+1)-pencil lattices can be used if the evaluation
of a function is much more expensive over some particular parts of a simplicial
partition. The additional freedom of the generalized lattices can be used to
diminish the number of points on the undesired parts.

The paper is organized as follows. In the next section, some properties of a
(d+1)-pencil lattice are briefly recalled. In Section 3, Newton-Cotes cubature
rules based on (d + 1)-pencil lattices are derived. In Section 4, a refinement
of a (d + 1)-pencil lattice is introduced as a necessary tool for the adaptive
integration, and in the last section, an adaptive cubature rule is presented,
together with some numerical examples.

2 (d+1)-pencil lattices

In this section, (d + 1)-pencil lattices as well as their barycentric representa-
tion, introduced in [6], are briefly recalled. A (d + 1)-pencil lattice of order

n on a simplex 4 := 〈T 0,T 1, . . . , T d 〉 is a set of
(

n+d
d

)
points, generated by

d+1 pencils of n+1 hyperplanes. Any lattice point is an intersection of d+1
hyperplanes, one from each pencil. All hyperplanes of the same pencil intersect
at a center Ci ⊂ Rd, i = 0, 1, . . . , d, a plane of codimension two. The lattice is
actually determined by d + 1 lattice control points P 0,P 1, . . . , P d, P i ∈ Rd,
where P i lies on the line passing through the vertices T i and T i+1, but outside
of the segment T iT i+1 (Fig. 1). The center Ci is then the unique plane of codi-
mension two that passes through all the control points P i, P i+1, . . . , P i+d−2.
If d = 2, the centers Ci are simply the control points P i (Fig. 1, left). If d > 2,
more control points are needed (Fig. 1, right), and some of the indices involved
are outside of {0, 1, . . . , d}. Obviously, in the sequence P d is followed by P 0,
etc. Thus, in order to make the discussion as short as possible, indices of con-
trol points, vertices, centers, lattice parameters and variables are assumed to
be taken modulo d + 1 throughout the paper.

A closed form of a lattice point has to depend on positions of the control
points. In the barycentric form, coordinates of P i w.r.t. T i T i+1 are particu-
larly simple. Let us denote them

(
1

1− ξi

,− ξi

1− ξi

)
.

Quite clearly, ξi > 0, since P i is not lying on the line segment T iT i+1. The
range 0 < ξi < 1 covers positions from the ideal line to the vertex T i, and 1 <
ξi < ∞ the half-line from T i+1 to the ideal line. This reveals the barycentric
coordinates of the control points w.r.t. 4 ([6]) as
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Fig. 1. (d+1)-pencil lattices with their control points P i and centers Ci on simplices
〈T 0, T 1, . . . ,T d 〉, for d = 2, 3.

P i =


0, 0, . . . , 0︸ ︷︷ ︸

i

,
1

1− ξi

,− ξi

1− ξi

, 0, 0, . . . , 0︸ ︷︷ ︸
d−1−i


 , i = 0, 1, . . . , d− 1,

P d =


− ξd

1− ξd

, 0, 0, . . . , 0︸ ︷︷ ︸
d−1

,
1

1− ξd


 .

If all of the control points that determine the center Ci are on the ideal
line, so is Ci, and the corresponding hyperplanes are parallel. The barycentric
coordinates of a (d + 1)-pencil lattice on 4 w.r.t. 4 are then determined by
d + 1 parameters ξ(4) := ξ := (ξ0, ξ1, . . . , ξd) as

Bγ := Bγ (ξ) =
1

χγ,ξ

(
αn−γ0 [γ0]α , ξ0α

n−γ0−γ1 [γ1]α , . . . , ξ0ξ1 · · · ξd−1 [γd]α

)
,

(2)
with

χγ,ξ := αn−γ0 [γ0]α + ξ0α
n−γ0−γ1 [γ1]α + . . . + ξ0ξ1 · · · ξd−1 [γd]α ,

where γ = (γ0, γ1, . . . , γd) ∈ Nd+1
0 , |γ| := ∑d

i=0 γi = n,

α := n

√√√√
d∏

i=0

ξi > 0, and [j]α :=





1− αj

1− α
, α 6= 1,

j, α = 1,
j ∈ N0.

The indices γ in (2) are determined by hyperplanes Hi,j such that

Bγ :=
d⋂

i=0

Hi,γi
.

Here Hi,j is the (j + 1)-th hyperplane passing through the center Ci+1. Since
|γ| = n, one can drop any fixed component of the index, and the lattice
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points will still be uniquely denoted. So, with γ = (γ0, γ1, . . . , γd), and γ ′ =
(γ1, γ2, . . . , γd),

H3, 0, 1L

H1, 0, 3L

H1, 1, 2L

H0, 0, 4L

H0, 1, 3L

H0, 2, 2L
H1 ,2, 1L

H2, 1, 1L

H1, 3, 0L

H0, 3, 1L

H2, 0, 2L

H0, 4, 0LH2, 2, 0LH3, 1, 0LH4, 0, 0L

H0, 1L

H0, 3L

H1, 2L

H0, 4L

H1, 3L

H2, 2L

H2, 1L
H1, 1L

H3, 0L

H3, 1L

H0, 2L

H4, 0LH2, 0LH1, 0LH0, 0L

Fig. 2. The indices of lattice points: γ = (γ0, γ1, . . . , γd), |γ| = n, (left), and
γ ′ = (γ1, γ2, . . . , γd), |γ ′| ≤ n, (right).

{Bγ , γ ∈ Nd+1
0 , |γ| = n} and {Bγ ′ , γ ′ ∈ Nd

0, |γ ′| ≤ n} (3)

refer to the same set of points (Fig. 2).

3 Newton-Cotes cubature rules for a simplex

Throughout the paper, S4(f) will denote the integral of a scalar field f : 4→
R over a simplex 4. The cubature rules will be based on the barycentric form.
As expected, this will enable us to extend the rules to an arbitrary simplex in
Rd by a simple transformation only. If γ ∈ Nd+1

0 , then let

Q(f) := Q(n)(f ; ξ) :=
∑

|γ|=n

ωγ(ξ)fγ , (4)

where fγ is the value of the function f at the point with the barycentric
coordinates Bγ , denote a cubature rule of degree n in the barycentric form for
the standard simplex 4d ⊆ Rd+1,

4d = 〈T 0,T 1, . . . , T d 〉, T i = (δi,j)
d
j=0 , i = 0, 1, . . . , d.

Here δi,j is the Kronecker delta. But Newton-Cotes rules are interpolatory, so
the weights ωγ(ξ) are determined as

ωγ(ξ) = S4d
(Lγ), |γ| = n, (5)

where Lγ are the Lagrange basis polynomials in the barycentric form. They
have been explicitly determined in [6]. Since (d + 1)-pencil lattices satisfy the
geometric characterization (GC) condition ([2]), these polynomials are of a
particularly simple form,

Lγ(x; ξ) =
d∏

i=0

γi−1∏

j=0

hi,j(x; ξ)

hi,j(Bγ ; ξ)
, x := (xi)

d
i=0 ∈ Rd+1,

d∑

i=0

xi = 1,
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with

hi,j (x; ξ) =
i+d∑

t=i

at,j(ξ) xt, at,j(ξ) =





[n− j]α , t = i,

([n− j]α − [n]α)
(∏t−1

k=i ξk

)−1
, t > i.

(6)
Note that indices of at,j(ξ) are not taken modulo d + 1. Here hi,j (x; ξ) = 0 is
the equation of the hyperplane Hi,j in the barycentric form, based upon the
center Ci+1 and lattice points Bγ(ξ), γ ∈ Nd+1

0 , |γ| = n, γi = j.

Let us introduce the sets of indices Λi
γ , i = 0, 1, . . . , d, and Λγ (Fig. 3). If

γi 6= 0, then

Λi
γ :=

{
λi :=

(
λi

0, . . . , λ
i
γi−1

)
, λi

0 = i, λi
j ∈ {i, . . . , i + d}, 0 < j ≤ γi − 1

}
,

otherwise Λi
γ := ∅. Further,

Λγ :=
{
λ :=

(
λ0

0, . . . , λ
0
γ0−1, . . . , λ

d
0, . . . , λ

d
γd−1

)
∈ Nn

0 , (λi
0, . . . , λ

i
γi−1) ∈ Λi

γ

}
.

0

1

2

3

4

l
0

l l l l
1 2 3 4

8

7

6

5

Fig. 3. λ = (0, 2, 1, 3, 2, 3, 5, 4, 6, 4) ∈ Λγ is an example for d = 4, n = 10 and
γ = (2, 3, 0, 4, 1). Any other selection of grey points would determine another index
vector in Λγ .

We can now state the following theorem.

Theorem 1 The weights ωγ(ξ) of the cubature rule (4) are

ωγ(ξ) = K(ξ) · ∑

λ∈Λγ




d∏

i=0

γi−1∏

j=0

aλi
j ,j(ξ)


 kλ,0! kλ,1! · · · kλ,d!

(n + d)!
, (7)

where

K(ξ) :=




d∏

i=0

γi−1∏

j=0

hi,j(Bγ ; ξ)



−1

,

and kλ,i denotes the frequency of i in λ.
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PROOF. By (5),

ωγ(ξ) = S4d
(Lγ) = K(ξ) ·

∫

4d




d∏

i=0

γi−1∏

j=0

hi,j(x; ξ)


 dx =

= K(ξ) ·
∫

4d

d∏

i=0




γi−1∏

j=0

i+d∑

t=i

at,j(ξ)xt


 dx =

= K(ξ) ·
∫

4d

d∏

i=0




∑

λi∈Λi
γ

γi−1∏

j=0

aλi
j ,j(ξ) xλi

j


 dx =

= K(ξ) · ∑

λ∈Λγ




d∏

i=0

γi−1∏

j=0

aλi
j ,j(ξ) ·

∫

4d

d∏

i=0

γi−1∏

j=0

xλi
j
dx


 .

With the help of the notation kλ,i we count the multiplicity of xi in the product∏d
i=0

∏γi−1
j=0 xλi

j
and obtain

d∏

i=0

γi−1∏

j=0

xλi
j
=

d∏

i=0

(
d∏

`=0

x
k
λi

,`

`

)
=

d∏

`=0

x
kλ,`

` .

Now, ωγ(ξ) becomes

ωγ(ξ) = K(ξ) · ∑

λ∈Λγ




d∏

i=0

γi−1∏

j=0

aλi
j ,j(ξ)

∫

4d

d∏

i=0

x
kλ,i

i dx


 . (8)

Further, with Γ being the gamma function,

∫

4d

d∏

i=0

x
kλ,i

i dx =
Γ(kλ,0 + 1) Γ(kλ,1 + 1) · · ·Γ(kλ,d + 1)

Γ(kλ,0 + kλ,1 + . . . + kλ,d + d + 1)
,

where for x ∈ Rd+1,
∑d

i=0 xi = 1,

∫

4d

f(x) dx :=
∫ 1

0
dx1

∫ 1−x1

0
dx2 · · ·

∫ 1−
∑d

i=1
xi

0
f((1−

d∑

i=1

xi, x1, . . . , xd)) dxd.

(9)
Since

d∑

i=0

kλ,i = n,

it follows ∫

4d

d∏

i=0

x
kλ,i

i dx =
kλ,0! kλ,1! · · · kλ,d!

(n + d)!
,

and the proof is concluded. 2
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As an example, let us compute the weights for d = 2 and n = 3. The barycen-
tric form of the cubature rule is given by

Q(3)(f ; ξ) :=
∑

|γ|=3

ωγ(ξ)fγ , γ ∈ N3
0,

and ωγ(ξ), |γ| = 3, is equal to one of the following possibilities:

γ ∈ {(3, 0, 0), (0, 3, 0), (0, 0, 3)}, i := (γi = 3) :

1

20
+

α3(1 + α) + αξi+1(1 + ξi+1) (α2(1 + α)− (1 + α(3 + α))ξi)

60 (1 + α)ξ2
i ξ

2
i+1

,

γ ∈ {(2, 1, 0), (2, 0, 1), (0, 2, 1)}, i := (γi = 2), j := (γj = 1) :

−
(
α + α2 +

∏j−1
t=i ξt

)3
((j − i)2α2 + 2ξi+1 (α2 − (j − i)(1 + α)ξi))

(j − i) 120 α2(1 + α)(1 + α + α2)ξ2
i ξ

j−i
i+1

,

γ ∈ {(1, 2, 0), (1, 0, 2), (0, 1, 2)}, i := (γi = 2), j := (γj = 1) :

−
(
α2 + (1 + α)

∏i−1
t=j ξt

)3
(2α2 + (i− j)ξi+1 ((i− j)α2 − 2(1 + α)ξi))

(i− j) 120 α5(1 + α) (α− (1 + α)2) ξi−j
j ξi−j−1

1

,

γ = (1, 1, 1) :

(α2 + ξ0(α + ξ1))
3

120 α3ξ2
0ξ1

.

Consider now a simplex4 = 〈V 0,V 1, . . . , V d 〉 ⊂ Rd. Let Xγ , γ ∈ Nd+1
0 , |γ| =

n, denote the Cartesian coordinates of lattice points. They are obtained from
the barycentric representation as

Xγ =
d∑

j=0

(Bγ)j+1 V j.

We are now able to state the following corollary.

Corollary 2 A Newton-Cotes cubature rule of degree n for a simplex 4 ⊂ Rd

is

Q4(f) := Q
(n)
4 (f ; ξ) :=

∑

|γ|=n

ωγ,4(ξ) f(Xγ) = d! vol (4)
∑

|γ|=n

ωγ(ξ) f(Xγ),

where ωγ(ξ) are the weights given by (7) and vol (4) is the volume of the
simplex 4.

PROOF. Let 4̃ := 〈T 0, T 1, . . . , T d 〉 ⊂ Rd, T i = (δi,j)
d
j=1, and let ũ :=
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(ũi)
d
i=1 ∈ 4̃. Then the barycentric coordinates of ũ w.r.t. 4̃ are

(
1−

d∑

i=1

ũi, ũ1, . . . , ũd

)
=: (ũ0, ũ).

Using (8) and (9), we obtain

ω
γ,4̃(ξ) = ωγ(ξ).

Suppose now 4 ⊂ Rd is an arbitrary simplex, and let u := (ui)
d
i=1 ∈ 4.

Further, let x(u) := (xi(u))d
i=0 be the barycentric coordinates of u w.r.t. 4.

By the definition of barycentric coordinates, (xi(u))d
i=0 = (ũi)

d
i=0. Since

ωγ,4(ξ) = S4(Lγ) = K(ξ) · ∑

λ∈Λγ




d∏

i=0

γi−1∏

j=0

aλi
j ,j(ξ)

∫

4

d∏

i=0

xi(u)kλ,i du




and

∫

4̃

d∏

i=0

ũ
kλ,i

i dũ = J ·
∫

4

d∏

i=0

xi(u)kλ,i du, J = det

(
∂ũ

∂u

)
=

vol(4̃)

vol(4)
=

1

d! vol(4)
,

where ∂ũ
∂u

is the Jacobian matrix, it follows

ωγ,4(ξ) =
1

J
ωγ(ξ) = d! vol(4) ωγ(ξ).

The proof is concluded. 2

Our next goal is to derive the error term of the cubature rule (4) in the
barycentric form for a sufficiently smooth function f . Let us recall that the
Lagrange interpolating polynomial, which interpolates given data fγ ∈ R, γ ∈
Nd+1

0 , |γ| = n, at the (d+1)-pencil lattice points with barycentric coordinates
(Bγ)|γ|=n, is

pn(x; ξ) =
∑

|γ|=n

fγ Lγ(x; ξ), x ∈ Rd+1,
d∑

i=0

xi = 1.

The error of a cubature rule is then obtained as S4d
(f − pn). So we have

to derive the interpolation error in a convenient form first. We shall follow
the way paved in [11] and [1]. But then the Newton basis polynomials in the
barycentric form need to be determined, too. These are the polynomials of
total degrees |γ| ≤ n, that vanish at particular subsets of interpolation points.
In order to determine these sets precisely, let us use the abbreviated lattice
point indexation introduced in (3) (see Fig. 2). Since the Newton polynomials
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Nγ ′ satisfy ([1])

Nγ ′(Bβ′) = δγ ′,β′ , ∀ γ ′,β′ ∈ Nd
0, |β′| ≤ |γ ′| ≤ n,

they also have a very simple barycentric representation

Nγ ′(x; ξ) =
d∏

i=1

γi−1∏

j=0

hi,j(x; ξ)

hi,j(Bγ ′ ; ξ)
.

This follows from the facts that a hyperplane Hi,j with the equation hi,j = 0,
given by (6), vanishes at lattice points Bβ′ , βi = j, and that for β′ 6= γ ′, |β′| ≤
|γ ′|, there exists an index i ∈ {1, 2, . . . , d}, such that βi < γi. Further, let us
recall some notation from [1] and translate it to the barycentric form. Let Ξn

represent the set of all paths

µ = (µ′
0,µ

′
1, . . . , µ

′
n), µ′

j ∈ Nd
0, |µ′

j| = j, j = 0, 1, . . . , n.

With any path µ, let us associate a set of lattice points Bµ, a corresponding
n-th order differential operator Dn

µ, and a number Πµ,

Bµ := Bµ(ξ) := {Bµ′0 , Bµ′1 , . . . , Bµ′n},

Dn
µ := Dn

µ(ξ) := DBµ′n−Bµ′
n−1

·DBµ′
n−1

−Bµ′
n−2

· · ·DBµ′
1
−Bµ′

0

,

Πµ := Πµ(ξ) :=
n−1∏

j=0

Nµ′j(Bµ′j+1
; ξ).

But the construction of the Newton basis polynomials on (d+1)-pencil lattices
gives Πµ = 0 if µ /∈ Ξ̃n, where

Ξ̃n := {µ ∈ Ξn, µ′
j+1 = µ′

j + (δi,k)
d
i=1, k ∈ {1, 2, . . . , d}, j = 0, 1, . . . , n− 1}.

This reveals the barycentric form of the interpolation error, derived in [11], as

f(x)−pn(x; ξ) =
∑

µ∈ Ξ̃n

Nµ′n(x; ξ) Πµ

∫

[Bµ, x]
Dx−Bµ′n

Dn
µf, x ∈ Rd+1,

d∑

i=0

xi = 1,

where

f(x) := f(u(x)), u(x) =
d∑

j=0

xj V j,

and ∫

[z0,z1,...,zm]
f :=

∫

4m

f(t0z0 + t1z1 + · · ·+ tmzm) dt.

This proves the following theorem
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Theorem 3 Let f ∈ Cn+1(Rd). The barycentric form of the error of the cu-
bature rule (4) is given as

E(f) = S4d




∑

µ∈Ξ̃n

Nµ′n(x; ξ)Πµ

∫

[Bµ, x]
Dx−Bµ′n

Dn
µ f


 .

4 Lattice refinement

In [7] it was shown that a (d + 1)-pencil lattice can be extended from a sim-
plex to a simplicial partition. The extension is such that any pair of simplices
that share a common face, share the lattice restriction to that face too (see
Fig. 4, e.g.). This implies a continuous piecewise polynomial interpolant over
the extended lattice. For a regular simplicial partition T in Rd with V ≥ d+1
vertices, there exists a (d + 1)-pencil lattice on T which is determined by
precisely V parameters. Using this extension, the cubature rule (4) can be
efficiently extended from a simplex to a simplicial partition. Since for small
enough degrees most of the lattice points lie on facets of simplices, the de-
scribed extension enables us to evaluate the function at these points only
once.

Newton-Cotes cubature rules become really useful in practice when one ap-
plies them in an adaptive way. A globally adaptive algorithm over a simplicial
partition is usually based upon successive refinements or subdivisions of sim-
plices. Though it is obvious that such a refinement could be carried out for
principal lattices, it is far away of being obvious that this can be done for
(d + 1)-pencil lattices too. In this section we present a lattice refinement step
that is a basis of the adaptive algorithm in the next section.

The lattice refinement approach is quite useful in multivariate interpolation.
Maybe the interpolating polynomial on some simplex of the partition provides
too poor approximation. An obvious remedy is to increase the number of
interpolation points on this simplex (Fig. 4). A natural way to do this is to
refine a lattice. Let 4 ∈ T be the simplex where the lattice refinement is
needed. In order to retain regularity of a simplicial partition, let us refine the
lattice by adding a new vertex into the interior of 4. The refinement of a
lattice on the simplicial partition T consists of the following steps (Fig. 4):

• Choose a simplex 4 ∈ T , where the refinement is needed.
• Add a new vertex T into the interior of 4.
• Add d + 1 edges from T to the vertices of 4. These edges split the simplex
4 into d + 1 new simplices.

• Construct new lattices on these simplices such that two adjacent simplices
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share the lattice restriction to the common face.

Fig. 4. A given surface and two different continuous piecewise polynomial inter-
polants over lattices on underlying triangulations.

The following theorem will precisely determine the last step of the lattice
refinement. The notation bd(4) will be used to denote the boundary (the
union of all facets) of a simplex 4.

Theorem 4 Let Bγ(ξ) be the barycentric coordinates of a (d+1)-pencil lattice
on 4 = 〈T 0,T 1, . . . , T d 〉, and let T d+1 be a vertex in the interior of 4 that
splits 4 to d + 1 simplices {4′

i}d+1
i=1 . Then there exist (d + 1)-pencil lattices

on {4′
i}d+1

i=1 which coincide on common faces of {4′
i}d+1

i=1 and agree with the
initial lattice on bd(4). Moreover, there is one degree of freedom to construct
these lattices (see Fig. 5).

PROOF. Let us order the vertices of 4′
i, i = 1, 2, . . . , d + 1, as

4′
i = 〈T i0 ,T i1 , . . . , T id 〉, 0 ≤ i0 < i1 < · · · < id = d + 1. (10)

Note that the indices of vertices are not taken modulo d + 1 here. Any pair of
simplices 4′

i, 4′
j has a facet in common. Let this facet be in 4′

i denoted as

〈T ir0
,T ir1

, . . . , T ird−1
〉, 0 ≤ ir0 < ir1 < · · · < ird−1

≤ d + 1,

with the corresponding vertices in 4′
j given by

T jrk
= T irk

, k = 0, 1, . . . , d− 1.

In [7] the winding number of an index vector (vj)
r
j=0,

w
(

(vj)
r
j=0

)
:=

r−1∑

k=0

H (vk − vk+1) + H (vr − v0) , H (t) :=





1, t > 0,

0, otherwise,
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has been defined. By (10),

w
((

ir0 , ir1 , . . . , ird−1

))
= w

((
jr0 , jr1 , . . . , jrd−1

))
= 1. (11)

Assume that the product of local barycentric lattice parameters on each sim-
plex in {4′

i}d+1
i=1 is equal to the product of local barycentric lattice parameters

for the lattice on 4. All simplices 4′
i, i = 1, 2, . . . , d + 1, have one facet in

common with 4. Let us first construct the lattice on 4′
1. Since a similar re-

lation as in (11) holds on the common facet, the lattice can be extended from
this facet to 4′

1 with one additional free parameter ([7], Corollary 7). Now
the simplices 4′

i, i = 2, 3, . . . , d + 1, have two facets in common with 4∪4′
1.

Therefore by the same argument as in the proof of Theorem 8 in [7] all lattices
on 4′

2,4′
3, . . . ,4′

d+1 are uniquely determined and agree with the given one
on bd(4) ∪ bd(4′

1). In order to conclude the proof, it only has to be shown
that the lattices agree on common facets 4′

ij := 4′
i ∩4′

j, 2 ≤ i < j ≤ d + 1.
Since 4′

ij are (d−1)-simplices, the case d = 2 has to be considered separately.
For d ≥ 3, lattices on 4′

ij are already uniquely determined by the lattices on
4 ∪ 4′

1 ([7], Corollary 4) and therefore the lattices on 4′
i and 4′

j agree on
4′

ij. Now let d = 2. The same corollary can not be used now, since facets of
(d− 1)-simplices are vertices and they do not include any information about
the lattice. However, a direct computation, using Corollary 7 of [7] six times,
concludes the proof. 2

Fig. 5. A lattice with parameters ξ0 = 1/2, ξ1 = 3/5, ξ2 = 4/3, and two different
refinements with the additional shape parameter ζ = 7/3, 1/2, respectively.

5 Adaptive cubature rule

In this section, we study derived cubature rules, applied in an adaptive way.
Let us consider the integrals of the form

∫

T
f(u) du =

∑

4∈T

∫

4
f(u) du, (12)

where T is a simplicial partition in Rd, using an adaptive algorithm that
consists of a sequence of stages, where each stage has the following steps:
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(a) from the current simplicial partition T ′ (at the beginning T ′ = T ) select
simplices 4, where the cubature rule does not give a satisfying approxima-
tion,

(b) subdivide selected simplices and determine the lattices on the newly ob-
tained simplices,

(c) update the simplicial partition T ′ with new simplices, apply a local cu-
bature rule to any new simplex by carefully avoiding extraneous function
evaluations, and update the global integral (12) for T ′.

At the beginning of the algorithm we have to determine a global integral
approximation based upon the initial (d + 1)-pencil lattice on the simplicial
partition T and then continue with the step (b). Since the step (c) is straight-
forward, we only have to describe steps (a) and (b). In the step (a) we select,
for a given constant ε > 0, collections of simplices {4′

1,4′
2, . . . ,4′

d+1}, for
which

∣∣∣∣∣Q4(f)−
d+1∑

i=1

Q4′i(f)

∣∣∣∣∣ > ε,

where 4 is the simplex that was split into 4′
1,4′

2, . . . ,4′
d+1 in the previous

stage. Of course there are several ways how to perform step (b), which requires
a subdivision of selected simplices (see [4], e.g.). But since our main goal is
to keep the number of function evaluations at new points as low as possible,
we will choose the subdivision strategy that will be based upon the lattice
refinement approach, presented in Section 4. Recall that in this case we have
to determine a subdivision point T inside the interior of a simplex, which
defines d + 1 new simplices

4′
i = 〈T 0,T 1, . . . , T d−i︸ ︷︷ ︸

d+1−i

, T d−i+2, T d−i+3, . . . , T d︸ ︷︷ ︸
i−1

,T 〉, i = 1, 2, . . . , d + 1.

(13)
Moreover, we have to determine the lattices on the newly obtained simplices,
i.e., we have to choose a shape parameter ζ used by the lattice refinement
(Fig. 5). Let us now consider two different possibilities how to determine a
subdivision point and the lattices on new simplices.

Algorithm 1. We subdivide a simplex 4 = 〈T 0, T 1, . . . , T d 〉 to d+1 new sim-
plices (13), where T := 1

d+1

∑d
i=0 T i, and the lattice on each simplex is a prin-

cipal lattice. This is possible only if the lattices on all simplices in the original
simplicial partition are principal lattices. We obtain the standard Newton-
Cotes adaptive rule.

Algorithm 2. Using the lattice refinement approach presented in Section 4,
we subdivide a simplex 4 = 〈T 0, T 1, . . . , T d 〉, having a (d + 1)-pencil lattice
determined by parameters ξ = (ξ0, ξ1, . . . , ξd), to d+1 simplices {4′

i}d+1
i=1 given

in (13), with lattices determined by parameters
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ξ(4′
1) =

(
ξ0, ξ1, . . . , ξd−2, ζ,

ξd−1ξd

ζ

)
,

ξ(4′
j) =

(
ξ0, ξ1, . . . , ξd−j−1, ξd−j · ξd−j+1, ξd−j+2, . . . , ξd−1,

ζ

ξd−1

,
ξd−1ξd

ζ

)
,

j = 2, 3, . . . , d− 1,

ξ(4′
d) =

(
ξ0 · ξ1, ξ2, ξ3, . . . , ξd−1,

ζ

ξd−1

,
ξd−1ξd

ζ

)
, (14)

ξ(4′
d+1) =

(
ξ1, ξ2, . . . , ξd−1,

ζ

ξd−1

,
ξd−1ξdξ0

ζ

)
,

where ζ is a free parameter. Suppose now that the number of function eval-
uations is crucial. The subdivision point T := z = (z1, z2, . . . , zd) and the
additional free parameter ζ in (14) can then be determined by a particular
procedure, which can substantially decrease the number of function evalua-
tions needed. Before we state this procedure, let us introduce the set of

(
n+d−1

d−1

)

monomials of total degree n,

Pn :=
{
uγ , |γ| = n, γ ∈ Nd

0

}
,

and the closed ball Ω4 ⊂ 4 = 〈T 0, T 1, . . . , T d 〉 ⊂ Rd,

Ω4 := Ω4(c, r) := {u ∈ 4, ‖ u− c ‖2≤ r} , c :=
1

d + 1

d∑

i=0

T i,

r :=
1

2
· min

0≤i<j≤d

{∥∥∥∥∥
T i + T j

2
− c

∥∥∥∥∥
2

}
.

procedure ChooseParameters(d, n,4, ξ)

1. value(z, ζ) := 0;
2. for p ∈ Pn+1

3. sum(z, ζ) = d!
∑d+1

i=1 vol(4′
i)

(∑
|γ|=n ωγ(ξ(4′

i)) p(Xγ(4′
i))

)
;

4. value(z, ζ) = value(z, ζ) + (S4(p)− sum(z, ζ))2;
5. end;

6. {z̄, ζ̄} :=

(
value(z̄, ζ̄) = min

z∈Ω4, 1
4
≤ζ≤4

value(z, ζ)

)
;

7. Return {z̄, ζ̄};

Note that this procedure does not depend on the integrated function f . If our
aim is to integrate several functions over the same simplicial partition, we will
store all the computed parameters {z̄, ζ̄}.

Let us compare both algorithms on several interesting functions (Table 1,
Fig. 6). Let T ⊂ [−1, 2]×[−3/2, 3/2] ⊂ R2 be a star (see [8], e.g.) and let d = 2
and n = 3. As expected, the number of function evaluations is significantly
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smaller for the second algorithm, since there is a freedom of choosing the
subdivision point T and the free parameter ζ at every step. Note that the
choice of the parameter ζ brings approximately 20% to this fact.

Table 1
The number of function evaluations needed to achieve the error |E(f)| is shown for
both Newton-Cotes algorithms and for algorithms based on rules Q4

G and Q6
G.

d = 2, n = 3 Alg. 1 Alg. 2 Q4
G Q6

G

f(u1, u2)
∫

f |E(f)| number of function evaluations

(u1u2)3 + (cos(u1 + u2))
2 2.86003 0.005 724 411 767 245

cos(u1 + u2) sin(u1 + u2) 0.09144 0.0002 1129 351 434 407

cos(u1 + u2) esin(u1+u2) 4.35648 0.0005 832 471 308 254

e−((0.4 (u1−0.3))2 +0.2 (u2−0.2)2) 5.51291 0.0001 1345 651 488 317

e−(2 |u1−0.2|+0.6 |u2+0.4|) + 1 8.33514 0.001 1102 411 1217 1541

3
2u1e

−2((u1− 1
2
)2+u2

2) − 3
2u2e

−(u2
1+u2

2) + 1 7.74886 0.0002 3397 2211 1487 1046

Let us conclude the paper with a brief efficiency comparison between particular
Gaussian type adaptive formulae, and the cubature rules outlined in the paper.
However, it should be emphasized that the computational complexity is not
the only issue to be kept in mind when one is comparing these two classes of
cubature rules. The Gaussian type requires the integrated function more or
less to be known in a closed form. On the other hand, Newton-Cotes formulae,
in the paper extended to generalized principal lattices, are closed form rules
based upon the function values evaluated at particular unisolvent sets of points
that can be simply generated in any dimension. Thus the data may be supplied
in a tabular form only. Also, since it is straightforward to generate the lattice
points, a way to a working computer program may be shorter. As for the
numerical test, let us recompute the examples by a similar adaptive algorithm,
but based upon two different Gaussian rules for d = 2 and n = 3. In the
barycentric form, the weights and the points of these two rules are (see [3],
e.g.)

Q4
G : ωi =

25

96
, i = 1, 2, 3, ω4 = − 9

32
,

B1 =
(

3

5
,
1

5
,
1

5

)
, B2 =

(
1

5
,
3

5
,
1

5

)
, B3 =

(
1

5
,
1

5
,
3

5

)
, B4 =

(
1

3
,
1

3
,
1

3

)
,

Q6
G : ωi =

1

12
, i = 1, 2, . . . , 6,

τ1 := 0.10903900907288, τ2 := 0.23193336855303, τ3 := 1− τ1 − τ2,

B1 = (τ1, τ2, τ3), B2 = (τ1, τ3, τ2), B3 = (τ2, τ1, τ3),

B4 = (τ2, τ3, τ1), B5 = (τ3, τ1, τ2), B6 = (τ3, τ2, τ1).
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The number of function evaluations in the adaptive Gaussian algorithms based
upon these two rules are shown in Table 1.

Fig. 6. The points where the function evaluations are needed in both Newton-Cotes
algorithms for the last two rows in Table 1.
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