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Abstract

An exact specification of the rotation-minimizing frame on a spatial Pythagorean-hodog-

raph (PH) curve can be derived by integration of a rational function. The result is an angular

function hðtÞ of the curve parameter, comprising in general both rational and logarithmic
terms, that specifies the orientation of the rotation-minimizing frame relative to the Frenet

frame. For PH cubics and quintics, the solution employs only arithmetic operations on the

curve coefficients and some complex square and cube root extractions. Moreover, the gener-

alization to PH curves of arbitrary order entails only standard polynomial algorithms (i.e.,

arithmetic, greatest common divisors, and resultants), solution of a linear system, and a min-

imal element of polynomial root-solving. Rotation-minimizing frames are employed in com-

puter animation, the construction of swept surfaces, and in robotics applications where the

axis of a tool or probe should remain tangential to a given spatial path while minimizing

changes of orientation about this axis.
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1. Introduction

At (almost) each point of a regular space curve rðtÞ, the Frenet frame defines an
orthonormal basis for vectors in R3 aligned with the local intrinsic curve geometry.

The elements of this basis are the curve tangent t, normal n, and binormal b, specified

[24] by
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t ¼ r0

jr0j ; n ¼ r0 � r00

jr0 � r00j � t; b ¼ t� n: ð1Þ

Note that, for a polynomial or rational curve rðtÞ, the unit vectors (1) do not depend
rationally on the curve parameter t (however, see [31] for discussion of a special class
of curves that possess rational Frenet frames).

On a regular curve (i.e., r0ðtÞ 6¼ 0 for all t) the tangent is defined at every point, but
the normal and binormal are undefined at inflection points, where r00ðtÞ becomes par-
allel to r0ðtÞ or vanishes. In fact, n and b as defined by (1) may experience sudden re-

versals upon passing through inflections.

At each point of the curve with r0 � r00 6¼ 0, the osculating, normal, and rectifying
planes are spanned by the pairs of vectors ðt; nÞ, ðn; bÞ, and ðb; tÞ, respectively. The
variation of the Frenet frame with curve arc length s may be described [24] by the
equations

dt

ds
¼ d� t;

dn

ds
¼ d� n;

db

ds
¼ d� b; ð2Þ

where the Darboux vector

d ¼ jbþ st ð3Þ

is defined in terms of the curvature and torsion, given by

j ¼ jr0 � r00j
jr0j3

and s ¼ ðr0 � r00Þ 	 r000

jr0 � r00j2
: ð4Þ

These quantities are invariant under any (regular) curve re-parameterization.

Equations (2) characterize the instantaneous variation of the Frenet frame as a ro-

tation about the vector d, at a rate given by the ‘‘total curvature’’

x ¼ jdj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ s2

p
: ð5Þ

In applications requiring control of the orientation of a rigid body, as its center of

mass executes a given path, alignment of the body�s principal axes with the Frenet
frame at each point may appear to be the obvious solution. However, other useful

orthonormal frames ðe1; e2; e3Þ may be defined along a space curve [2]. In most con-
texts it is natural to choose e1 ¼ t, and ðe2; e3Þ are then obtained from ðn; bÞ by a ro-
tation in the normal plane:

e2
e3

� �
¼ cos h sin h


 sin h cos h

� �
n

b

� �
: ð6Þ

This allows us to remedy the indeterminacy of the Frenet frame at inflections, and
also provides additional flexibility to adapt the orthonormal frame to the require-

ments of specific applications. An example is the rotation-minimizing frame intro-

duced by Klok [23] for the construction of swept surfaces, which are defined by the

motion of a planar ‘‘profile’’ curve along a spatial ‘‘sweep’’ curve. The profile curve

remains in the normal plane of the sweep curve, but the variation of its orientation in

that plane must be specified.
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For the purpose of orienting a profile curve along a given sweep curve, the rota-

tion-minimizing frame is preferable to the Frenet frame in the following sense. By
substituting (3) into (2), we obtain

_tt
_nn
_bb

2
4

3
5 ¼

0 j 0


j 0 s
0 
s 0

2
4

3
5 t

n

b

2
4

3
5;

where dots indicate derivatives with respect to s. This reveals that t changes at in-
stantaneous rate j in the direction of n. The instantaneous change of n has two
components: rate 
j in the direction of t, and rate s in the direction of b. Finally, b
changes at instantaneous rate 
s in the direction of n. Now changes in the direction
of t are unavoidable if we choose a basis with e1 ¼ t. The change of n in the direction

of b, and of b in the direction of n, however, correspond to a rotation of these vectors

in the normal plane.

By a suitable choice for the variation of the angle h in (6), an orthonormal frame
that eliminates this ‘‘unnecessary’’ rotation may be defined. Klok [23] showed that,
with e1 ¼ t, the remaining basis vectors must satisfy

e0kðtÞ ¼ 
 r00ðtÞ 	 ekðtÞ
jr0ðtÞj2

r0ðtÞ; k ¼ 2; 3

in order to define such a rotation-minimizing frame. Substituting from (6), one can

verify that this amounts to the differential equation

dh
dt

¼ 
jr0js ¼ 
jr0j ðr
0 � r00Þ 	 r000

jr0 � r00j2
ð7Þ

for the angular function hðtÞ used to obtain ðe2; e3Þ from ðn; bÞ. Hence, as noted by
Guggenheimer [17], this function has the form 1

hðtÞ ¼ h0 

Z t

0

sðuÞjr0ðuÞjdu: ð8Þ

Unfortunately, the above integral does not admit a closed-form reduction for the

polynomial and rational curves employed in computer graphics, computer-aided

design, robotics, and similar applications. Consequently, a number of schemes have
been proposed to approximate the rotation-minimizing frame of a given curve, or to

approximate a given curve by ‘‘simpler� segments (e.g., cicular arcs) with known
rotation-minimizing frames [20–22,32].

Approximation schemes always incur concerns over accuracy, robustness, and

data volume. Our intent here is to avoid such concerns by deriving exact rotation-

minimizing frames for a special class of curves—the Pythagorean-hodograph (PH)

curves. PH curves incorporate special algebraic structures, that offer many computa-

tional advantages [1,7,8,12–14] in design and manufacturing applications. For exam-
ple, their arc lengths can be computed precisely, they have rational offsets, and one

1 An incorrect sign before the integral is given in [17].
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a unit quaternion U ¼ cos 1
2
h þ sin 1

2
hn satisfying UU� ¼ 1—the rotated instance of

the hodograph can be written as

~rr0ðtÞ ¼ Ur0ðtÞU� ¼ ~AAðtÞi ~AA�ðtÞ;

where we define the new quaternion polynomial ~AAðtÞ ¼ UAðtÞ.
The simplest non-trivial spatial PH curves are cubics—they correspond to seg-

ments of non-circular helices (i.e., the ratio j=s of curvature to torsion is constant),
and may be characterized by certain geometrical constraints on their B�eezier control
polygons [14]. To guarantee sufficient shape flexibility for typical applications, we

must employ quintic PH curves. The construction of spatial PH quintics as first-

order Hermite interpolants is described in [10].

In lieu of the Frenet frame and rotation-minimizing frame, Choi and Han [3] have

proposed the rational ‘‘Euler–Rodrigues frame’’ defined by

e1 ¼ UðtÞi U�ðtÞ; e2 ¼ UðtÞj U�ðtÞ; e3 ¼ UðtÞk U�ðtÞ;

where UðtÞ ¼ AðtÞ=jAðtÞj, and they characterize the angular velocity of this frame
relative to the rotation-minimizing frame for PH cubics and quintics. Sufficient and

necessary conditions for the Euler–Rodrigues frame to coincide with a rotation-

minimizing frame on PH quintics are also given.

Our intent is to derive exact rotation-minimizing frames for PH curves. We begin

by writing the relation (7) in the form

dh
dt

¼ 
 pðtÞ
qðtÞ ; ð13Þ

where

pðtÞ ¼ jr0ðtÞj½r0ðtÞ � r00ðtÞ� 	 r000ðtÞ; qðtÞ ¼ jr0ðtÞ � r00ðtÞj2:

Now if rðtÞ is a polynomial curve of degree n, we have

degðr0 � r00Þ ¼ 2n 
 4 and degððr0 � r00Þ 	 r000Þ ¼ 3n 
 9
due to cancellation of highest-order terms, while jr0ðtÞj is the square root of a
polynomial of degree 2n 
 2 in t. In general, the latter term precludes the possibility
of a closed-form integration of equation (13).

For the PH curves, however, some striking simplifications arise. First, we have

jr0ðtÞj ¼ rðtÞ—a polynomial (of degree n 
 1) in t, and the right-hand side of (13) is
thus a rational function. Furthermore, a common factor may be cancelled from

the numerator and denominator. Substituting (10) into

jr0 � r00j2 ¼ ðy0z00 
 y 00z0Þ2 þ ðz0x00 
 z00x0Þ2 þ ðx0y 00 
 x00y0Þ2;

we deduce for PH curves the remarkable factorization

jr0 � r00j2 ¼ r2q;
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where r ¼ u2 þ v2 þ p2 þ q2 as in (10), and the polynomial q is defined by

q ¼ 4½ðup0 
 u0pÞ2 þ ðuq0 
 u0qÞ2 þ ðvp0 
 v0pÞ2 þ ðvq0 
 v0qÞ2

þ 2ðuv0 
 u0vÞðpq0 
 p0qÞ�;

with degðqÞ ¼ 2n 
 6. Cancelling the common factor rðtÞ from pðtÞ and qðtÞ, we may
write (13) in the case of a PH curve as

dh
dt

¼ 
 ½r0ðtÞ � r00ðtÞ� 	 r000ðtÞ
rðtÞqðtÞ : ð14Þ

Now for a degree-n PH curve, degððr0 � r00Þ 	 r000Þ ¼ 3n 
 9, degðrÞ ¼ n 
 1, and
degðqÞ ¼ 2n 
 6. Hence, the right-hand side is a proper rational fraction whose nu-
merator is degree 2 less than the denominator. Specifically, for PH cubics

ðr0 � r00Þ 	 r000 and q are constants, while r is quadratic. For PH quintics, ðr0 � r00Þ 	 r000
is of degree 6, while r and q are both quartic in t.
For n P 5, the partial fraction expansion of (14) is defined by polynomials aðtÞ

and bðtÞ, with degðaÞ6 n 
 2 and degðbÞ6 2n 
 7, such that

½r0ðtÞ � r00ðtÞ� 	 r000ðtÞ ¼ aðtÞqðtÞ þ bðtÞrðtÞ: ð15Þ

This is an identity among polynomials of degree 3n 
 8. Equating coefficients of like
terms yields 3n 
 7 linear equations for the ðn 
 1Þ þ ð2n 
 6Þ ¼ 3n 
 7 unknown
coefficients of aðtÞ and bðtÞ. Solving for these coefficients, we have

½r0ðtÞ � r00ðtÞ� 	 r000ðtÞ
rðtÞqðtÞ ¼ aðtÞ

rðtÞ þ
bðtÞ
qðtÞ : ð16Þ

With h ¼ h0 when t ¼ 0, integration of (13) then yields

hðtÞ ¼ h0 

Z t

0

aðsÞ
rðsÞ ds 


Z t

0

bðsÞ
qðsÞ ds: ð17Þ

3. Integration of rational functions

For PH cubics, the integration of (14) is a trivial task, since the numerator is a

constant and the denominator is quadratic. For PH quintics, we use (17), where

aðtÞ, bðtÞ are at most cubic and rðtÞ, qðtÞ are quartics. Before treating these specific
cases in detail, we review some general principles governing the integration of ra-

tional functions in as exact a manner as possible.

In general, the indefinite integral of a rational functionZ
pðtÞ
qðtÞ dt; ð18Þ

where gcdðp; qÞ ¼ 1 and degðpÞ < degðqÞ, yields a function with both rational and
transcendental (logarithmic) terms. The naive approach is to attempt to completely
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factorize qðtÞ into linear factors over C, or into linear/quadratic factors over R, and
then perform a decomposition of the integrand into partial fractions. In general,
however, such factorizations incur algebraic constants that can only be approxi-

mated in floating-point arithmetic, even though the final integral may not depend on

all of them in an essential way.

The study of algorithmic integration of rational functions, with minimal introduc-

tion of algebraic constants, was motivated by the advent of computer algebra sys-

tems [5,29]. The first step involves extracting the rational part of (18) by the

method of Horowitz [18,19]. Using Euclid�s algorithm [30] to compute gcdðqðtÞ;
q0ðtÞÞ, we define

q1ðtÞ ¼ gcdðqðtÞ; q0ðtÞÞ and q2ðtÞ ¼
qðtÞ

gcdðqðtÞ; q0ðtÞÞ
so that

qðtÞ ¼ q1ðtÞq2ðtÞ: ð19Þ
We may assume, without loss of generality, that q2ðtÞ is a monic polynomial (i.e.,
that its highest-order coefficient is 1). Note that the roots of q1ðtÞ are the multiple
roots of qðtÞ. Specifically, if z is a root of q of multiplicity m P 2, then it is a root of q1
of multiplicity m 
 1. Moreover, each of the distinct (simple or multiple) roots of qðtÞ
is a simple root of q2ðtÞ.
We seek polynomials p1ðtÞ, p2ðtÞ such that pðtÞ=qðtÞ can be expressed as

pðtÞ



The integral on the right in (22) is the transcendental part. If degðq2Þ ¼ N , then
q2ðtÞ has distinct roots z1; . . . ; zN and the integrand has the complete partial fraction
decomposition

p2ðtÞ
q2ðtÞ

¼
XN

k¼1

ck

t 
 zk
; ð23Þ

and hence we have

Z
p2ðtÞ
q2ðtÞ

dt ¼
XN

k¼1
ck lnðt 
 zkÞ:

Since p2ðtÞ and q2ðtÞ are real, complex terms in this sum occur in conjugate pairs, and
may be combined to yield explicitly real expressions.

In general, the roots z1; . . . ; zN are algebraic numbers that do not admit exact, fi-

nite decimal representations. In floating-point arithmetic, they must be approxi-

mated. A ‘‘defect’’ of the complete partial-fraction decomposition (23) is that it

employs all these roots, although the integral may ultimately be expressible in a form

that does not require all of them.
The following approach, due to Rothstein [26] and Trager [27], evaluates such in-

tegrals with a minimal algebraic extension of the set of constants. Let f ðtÞ, gðtÞ be
polynomials satisfying degðf Þ < degðgÞ, gcdðf ; gÞ ¼ 1, with gðtÞ monic and square-
free. Then if c1; . . . ; ch are the distinct roots of

hðcÞ ¼ Resultanttðf ðtÞ 
 cg0ðtÞ; gðtÞÞ ¼ 0 ð24Þ
we have

Z
f ðtÞ
gðtÞ dt ¼

Xh

k¼1
ck ln mkðtÞ;

where the polynomials m1ðtÞ; . . . ; mhðtÞ are defined by
mkðtÞ ¼ gcdðf ðtÞ 
 ckg0ðtÞ; gðtÞÞ:

Apart from the need for a numerical determination of the roots of (24), this method

is essentially exact for rational functions of arbitrary order.

4. Frames for PH cubics and quintics

In principle, the procedure described in Section 3 allows rotation-minimizing

frames to be computed for PH curves of arbitrary order. We now give more specific

details for the PH cubics and quintics. The former admit a particularly simple closed-

form reduction, but in general PH cubics do not offer sufficient shape flexibility for
free-form design applications. The PH quintics are a little more involved, but provide

much greater geometrical versatility.

PH cubics are constructed by inserting four linear polynomials, expressed in the

Bernstein form uðtÞ ¼ u0ð1
 tÞ þ u1t and similarly for vðtÞ, pðtÞ, qðtÞ, into (10),

R.T. Farouki / Graphical Models 64 (2003) 382–395 389



and integrating the hodograph. In this case, ½r0ðtÞ � r00ðtÞ� 	 r000ðtÞ and qðtÞ are both
constants, and their ratio is the quantity

k ¼ 2ðu0v1 
 u1v0 
 p0q1 þ p1q0Þ:
The orientation of the rotation-minimizing frame relative to the Frenet frame is thus

defined by the function

hðtÞ ¼ h0 
 k
Z t

0

ds
rðsÞ ;

where the parametric speed is the quadratic

rðtÞ ¼ r0ð1
 tÞ2 þ r12ð1
 tÞt þ r2t2

with Bernstein coefficients

r0 ¼ u20 þ v20 þ p20 þ q20;

r1 ¼ u0u1 þ v0v1 þ p0p1 þ q0q1;

r2 ¼ u21 þ v21 þ p21 þ q21:

Hence [16] we have

hðtÞ ¼ h0 þ
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21 
 r0r2
p tanh
1

ðr2 
 2r1 þ r0Þt þ r1 
 r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 
 r0r2

p
or

hðtÞ ¼ h0 

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r0r2 
 r21
p tan
1

ðr2 
 2r1 þ r0Þt þ r1 
 r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0r2 
 r21

p
according to whether r21 
 r0r2 is positive or negative.
PH quintics are defined by inserting four quadratic polynomials, uðtÞ ¼

u0ð1
 tÞ2 þ u12ð1
 tÞt þ u2t2 and similarly for vðtÞ, pðtÞ, qðtÞ, into (10), and integrat-
ing. In this case, ½r0ðtÞ � r00ðtÞ� 	 r000ðtÞ is of degree 6, while qðtÞ and rðtÞ are quartics.
We use the form (17), where aðtÞ and bðtÞ are determined by solving the linear system
defined by Eq. (15).

We begin by dividing the numerator and denominator of the integrands in (17) by

the highest-order coefficient of the denominator, so we can assume that rðtÞ and qðtÞ
are monic. These two quartics can be explicitly factorized by invoking Ferrari�s
method [30] to compute their roots (see Appendix A). If we denote these roots by
z1; z2; z3; z4 and w1;w2;w3;w4, respectively, the coefficients c1; c2; c3; c4 and

d1; d2; d3; d4 in the partial fraction expansions

aðtÞ
rðtÞ ¼

X4
k¼1

ck

t 
 zk
and

bðtÞ
qðtÞ ¼

X4
k¼1

dk

t 
 wk

can be found by clearing the denominators, and setting t equal to each of the roots in
succession, to obtain
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ck ¼
aðzkÞQ

j 6¼kðzk 
 zjÞ
and dk ¼

bðwkÞQ
j 6¼kðwk 
 wjÞ

ð25Þ

for k ¼ 1; . . . ; 4. Integration then gives

hðtÞ ¼ h0 

X4
k¼1

ck lnðt 
 zkÞ þ dk lnðt 
 wkÞ:

Now since rðtÞ and qðtÞ are real polynomials, their complex roots must occur as
conjugate pairs, and the corresponding partial-fraction coefficients are also complex

conjugates. Logarithmic terms that correspond to such pairs can be combined to give
explicitly real expressions: for example, if z, �zz and c, �cc are conjugate roots and co-
efficients, we have

c lnðt 
 zÞ þ �cc lnðt 
 �zzÞ ¼ 2½ReðcÞ ln jt 
 zj 
 ImðcÞ argðt 
 zÞ�:

Here argðt 
 zÞ must be interpreted as a continuous function—i.e., it should not be
reduced modulo 2p.

Example. Consider the PH quintic with rð0Þ ¼ ð0; 0; 0Þ and Bernstein coefficents ðu0;
u1; u2Þ ¼ ð2; 0; 2Þ, ðv0; v1; v2Þ ¼ ð1; 1; 0Þ, ðp0; p1; p2Þ ¼ ð0;
2; 0Þ, ðq0; q1; q2Þ ¼ ð1; 2; 1Þ
for the quadratic polynomials in (10). In this case,

½r0ðtÞ � r00ðtÞ� 	 r000ðtÞ ¼ 16032t6 
 49152t5 þ 74592t4 
 66560t3

þ 32256t2 
 6912t 
 576

and

rðtÞ ¼ 37t4 
 72t3 þ 46t2 
 12t þ 6;

qðtÞ ¼ 80t4 
 544t3 þ 3376t2 
 2976 t þ 720:
The partial fraction decomposition (16) is then defined by the polynomials

aðtÞ ¼ 8t2 
 8t and bðtÞ ¼ 416t2 
 384t 
 96:
Ferrari�s method (see Appendix A) then gives

z1;�zz1 ¼ 0:012018388019� 0:394440354901 i
z2;�zz2 ¼ 0:960954584954� 0:343344423853 i

and

w1; �ww1 ¼ 0:493692520439� 0:069302855662 i
w2; �ww2 ¼ 2:906307479561� 5:269302855662 i

for the roots of rðtÞ and qðtÞ. The corresponding partial fraction coefficients, ob-
tained from (25), are

c1; �cc1 ¼ 
0:096099539514� 0:030185214163 i
c2; �cc2 ¼ 0:096099539514� 0:014590334426 i
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and

d1; �dd1 ¼ �0:5i; d2; �dd2 ¼ �0:5i:
In terms of the above complex values, we now have

hðtÞ ¼ h0 
 2
X2
k¼1

½ReðckÞ ln jt 
 zkjImðckÞ argðt 
 zkÞ�


 2
X2
k¼1

½ReðdkÞ ln jt 
 wkj 
 ImðdkÞ argðt 
 wkÞ�;

Fig. 1. A PH quintic space curve (left), with B

�eezier control polygon. A lso shown are the Frenet frame

(center) and rotation-minimizing frame(right).

Fig. 2. Comparison of instantaneous rates of rotation for the Frenet frame and the rotation-minimizing

frame along the PH quintic shown in Fig. 1.
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where the integration constant h0 may be chosen such that hð0Þ ¼ 0. Fig. 1 compares
the variation of the Frenet and rotation-minimizing frames along the example PH
curve. A quantitative comparison is presented in Fig. 2, which shows the instanta-

neous rates of rotation for both frames—namely, x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ s2

p
for the Frenet frame,

and j for the rotation-minimizing frame. It is apparent that, compared to the ro-
tation-minimizing frame, the motion of the Frenet frame incurs a great deal of

‘‘unnecessary’’ rotation.

5. Closure

For applications such as computer animation, robotics, and construction of

swept surfaces, in which the computation of rotation-minimizing frames plays a

key role, the spatial PH curves offer exact solutions that obviate concerns over

the accuracy, efficiency, and data volume of approximation schemes. For PH cu-

bics and quintics, in particular, integration of the torsion to obtain the relative ori-

entation of the rotation-minimizing and Frenet frames involves a partial-fraction

decomposition of rational functions with (at most) quartic denominators, which
admit complete factorization through the determination of their roots by radicals.

The resulting angular function hðtÞ specifying the rotation-minimizing frame com-
prises, in general, a rational function plus a sum of logarithmic terms. The method

can, in principle, be extended to PH curves of higher order with minimal introduc-

tion of new algebraic constants. There is also a quite straightforward extension to

PH spline curves.
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Appendix A. Ferrari’s method for quartics

The four roots of the quartic equation

t4 þ a3t3 þ a2t2 þ a1t þ a0 ¼ 0 ðA:1Þ
may be computed by Ferrari�s method [30]. Namely, let z be a real root of the re-
solvent cubic equation

z3 þ c2z2 þ c1z þ c0 ¼ 0 ðA:2Þ
with c2 ¼ 
a2, c1 ¼ a1a3 
 4a0, and c0 ¼ 4a2a0 
 a21 
 a23a0. Then the roots of (A.1)
are the same as the roots of the two quadratic equations

t2 þ 1
2
a3

�
� E

�
t þ 1

2
z

�
� F

�
¼ 0; ðA:3Þ
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where we define

E ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a23 þ 4ðz 
 a2Þ

q
and F ¼ a3z 
 2a1

4E
: ðA:4Þ

The roots of the cubic (A.2) may be obtained by Cardano�s method [30]. Set

Q ¼ 3c1 
 c22
9

; R ¼ 9c1c2 
 27c0 
 2c
3
2

54
; D ¼ Q3 þ R2;

and let S be any of the three complex values specified by

S ¼ R
�

þ
ffiffiffiffi
D

p �1=3
: ðA:5Þ

Then, writing

A ¼ S 
 Q
S

and B ¼ S þ Q
S
; ðA:6Þ

the roots of (A.2) are given by

z ¼

 1
3
c2 þ A;


 1
3
c2 
 1

2
A þ 1

2

ffiffiffi
3

p
iB;


 1
3
c2 
 1

2
A 
 1

2

ffiffiffi
3

p
iB:

8<
: ðA:7Þ

One of the roots (A.7) is real and the other two are complex conjugates when D > 0;
all three roots are real and distinct when D < 0; and when D ¼ 0 there is a multiple
root. Note that, even if all three roots are real, complex arithmetic is generally re-

quired to evaluate the quantities (A.5)–(A.7), and also to compute (A.4) and the

roots of the quadratic equations (A.3).
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