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T

xt, b=txn. (1)

Note that, for a polynomial or rational curve r(t), the unit vectors (1) do not depend
rationally on the curve parameter t (however, see [31] for discussion of a special class
of curves that possess rational Frenet frames).

On a regular curve (i.e., r'(t) # 0 for all t) the tangent is defined at every point, but
the normal and binormal are undefined at inflection points, where r”(t) becomes par-
allel to r'(t) or vanishes. In fact, n and b as defined by (1) may experience sudden re-
versals upon passing through inflections.

At each point of the curve with v x v # 0, the osculating, normal, and rectifying
planes are spanned by the pairs of vectors (t,n), (n,b), and (b, t), respectively. The
variation of the Frenet frame with curve arc length s may be described [24] by the
equations

dt dn db

p— _— = —_— = 2

s dxt, s d x n, s d x b, (2)
where the Darboux vector

d=xb+1t (3)
is defined in terms of the curvature and torsion, given by

_ I x;"\ and 1= (¥ x1") -Zr”’. @
‘l"| |l'/ % r//|

These quantities are invariant under any (regular) curve re-parameterization.
Equations (2) characterize the instantaneous variation of the Frenet frame as a ro-
tation about theglector d, at a rate given by the “total curvature”

o=d= r’+1 (5)

In applications requiring control of the orientation of a rigid body, as its center of
mass executes a given path, alignment of the body’s principal axes with the Frenet
frame at each point may appear to be the obvious solution. However, other useful
orthonormal frames (e;, e, e;) may be defined along a space curve [2]. In most con-
texts it is natural to choose e; = t, and (e,, e;) are then obtained from (n,b) by a ro-
tation in the normal plane:

[ez] _ [ cos 6 sin@} [n} (©)
€3 —sinf cosO||b|

This allows us to remedy the indeterminacy of the Frenet frame at inflections, and
also provides additional flexibility to adapt the orthonormal frame to the require-
ments of specific applications. An example is the rotation-minimizing frame intro-
duced by Klok [23] for the construction of swept surfaces, which are defined by the
motion of a planar “profile” curve along a spatial “sweep’” curve. The profile curve

remains in the normal plane of the sweep curve, but the variation of its orientation in
that plane must be specified.
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For the purpose of orienting a profile curve along a given sweep curve, the rota-
tion-minimizing frame is preferable to the Frenet frame in the following sense. By
substituting (3) into (2), we obtain

:l-lz —OK KO (r)—‘ ltl-l

b 0 —1t 0 |b

3

where dots indicate derivatives with respect to s. This reveals that t changes at in-
stantaneous rate x in the direction of n. The instantancous change of n has two
components: rate —x in the direction of t, and rate 7 in the direction of b. Finally, b
changes at instantaneous rate —t in the direction of n. Now changes in the direction
of t are unavoidable if we choose a basis with e; = t. The change of n in the direction
of b, and of b in the direction of n, however, correspond to a rotation of these vectors
in the normal plane.

By a suitable choice for the variation of the angle 6 in (6), an orthonormal frame
that eliminates this “unnecessary’ rotation may be defined. Klok [23] showed that,
with e; = t, the remaining basis vectors must satisfy

- O ed) _
e (t) = O rit), k=23

in order to define such a rotation-minimizing frame. Substituting from (6), one can
verify that this amounts to the differential equation
do (rxr")-r"

= Il =]

G- (7)

¥ x r|*

Guggenheimer [17], this function has the form '
t

0(t) =0y —  t(u)r'(u)|du. (8)

0

for the angular fuj{ction 0(t) used to obtain (e, e;) from (n,b). Hence, as noted by

Unfortunately, the above integral does not admit a closed-form reduction for the
polynomial and rational curves employed in computer graphics, computer-aided
design, robotics, and similar applications. Consequently, a number of schemes have
been proposed to approximate the rotation-minimizing frame of a given curve, or to
approximate a given curve by ‘“‘simpler’ segments (e.g., cicular arcs) with known
rotation-minimizing frames [20-22,32].

Approximation schemes always incur concerns over accuracy, robustness, and
data volume. Our intent here is to avoid such concerns by deriving exact rotation-
minimizing frames for a special class of curves—the Pythagorean-hodograph (PH)
curves. PH curves incorporate special algebraic structures, that offer many computa-
tional advantages [1,7,8,12-14] in design and manufacturing applications. For exam-
ple, their arc lengths can be computed precisely, they have rational offsets, and one

! An incorrect sign before the integral is given in [17].
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a unit quaternion U = cosi0 + sini0n satisfying U{* = 1—the rotated instance of
the hodograph can be written as

F(t) = Ur (U = A@L)iA(t),

where we define the new quaternion polynomial A(t) = UA(t).

The simplest non-trivial spatial PH curves are cubics—they correspond to seg-
ments of non-circular helices (i.e., the ratio k/7 of curvature to torsion is constant),
and may be characterized by certain geometrical constraints on their Bézier control
polygons [14]. To guarantee sufficient shape flexibility for typical applications, we
must employ quintic PH curves. The construction of spatial PH quintics as first-
order Hermite interpolants is described in [10].

In licu of the Frenet frame and rotation-minimizing frame, Choi and Han [3] have
proposed the rational “Euler—Rodrigues frame™ defined by

e = UML), e =UU ), e =UbKUL),

where U(t) = A(t)/|A(t)|, and they characterize the angular velocity of this frame
relative to the rotation-minimizing frame for PH cubics and quintics. Sufficient and
necessary conditions for the Euler-Rodrigues frame to coincide with a rotation-
minimizing frame on PH quintics are also given.
Our intent is to derive exact rotation-minimizing frames for PH curves. We begin
by writing the relation (7) in the form
o p()

& T qn) (13)

p(t) = [FOI[F(®) x F"(©)] - r" (1), () = [F'(t) x F"(B)].
Now if r(t) is a polynomial curve of degree n, we have
deg(r' xr")=2n—-4 and deg((r' xr")-r")=3n-9

due to cancellation of highest-order terms, while |r'(t)| is the square root of a
polynomial of degree 2n — 2 in t. In general, the latter term precludes the possibility
of a closed-form integration of equation (13).

For the PH curves, however, some striking simplifications arise. First, we have
[¥'(t)| = o(t)—a polynomial (of degree n — 1) in t, and the right-hand side of (13) is
thus a rational function. Furthermore, a common factor may be cancelled from
the numerator and denominator. Substituting (10) into

‘l‘/ % r//‘Z — (y/z// _ y//Z/)Z + (Z/X” _ Z//X/)Z + (X/y// _ X//y/)Z7
we deduce for PH curves the remarkable factorization

‘l'/ % r//‘Z _ 0_2p7
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where ¢ = U? 4 V2> + p? + ¢* as in (10), and the polynomial p is defined by

p = A4[(up’ — up)’ + (ug’ — u'q)* + (vp' —vp)> + (vg' —Vvq)°
+2(uw' —u'v)(pq’ - p'q)],

with deg(p) = 2n — 6. Cancelling the common factor ¢(t) from p(t) and q(t), we may
write (13) in the case of a PH curve as
/ /! i

0[P <] 14

dat o(t) p(1)
Now for a degree-n PH curve, deg((r' xr”) -r”) =3n—-9, deg(s) =n—1, and
deg(p) = 2n — 6. Hence, the right-hand side is a proper rational fraction whose nu-
merator is degree 2 less than the denominator. Specifically, for PH cubics
(r x 1) -r” and p are constants, while ¢ is quadratic. For PH quintics, (¢’ x r”) - 1"
is of degree 6, while ¢ and p are both quartic in t.

For n > 5, the partial fraction expansion of (14) is defined by polynomials a(t)

and b(t), with deg(a) <n — 2 and deg(b) <2n — 7, such that

F() x ()] - (1) = a(t) p(t) + b(t) o (0). (15)

This is an identity among polynomials of degree 3n — 8. Equating coefficients of like
terms yields 3n — 7 linear equations for the (n— 1)+ (2n — 6) = 3n — 7 unknown
coefficients of a(t) and b(t). Solving for these coefficients, we have

() xx"(O)] - r"(t) _a(t)  b(t)
0 o) o) (e
With 6 = 6, when/t = 0, integrgtion of (13) then yields
_o- g PO
0(t) = 6, ) o) d e dr. (17)

3. Integration of rational functions

For PH cubics, the integration of (14) is a trivial task, since the numerator is a
constant and the denominator is quadratic. For PH quintics, we use (17), where
a(t), b(t) are at most cubic and a(t), p(t) are quartics. Before treating these specific
cases in detail, we review some general principles governing the integration of ra-
tional functions in as exact a manner as possible.

In general, the indefinite integral of a rational function

P(Y) 4 (18)

q(t)

where ged(p,q) = 1 and deg(p) < deg(q), yields a function with both rational and
transcendental (logarithmic) terms. The naive approach is to attempt to completely



factorize q(t) into linear factors over C, or into linear/quadratic factors over R, and
then perform a decomposition of the integrand into partial fractions. In general,
however, such factorizations incur algebraic constants that can only be approxi-
mated in floating-point arithmetic, even though the final integral may not depend on
all of them in an essential way.

The study of algorithmic integration of rational functions, with minimal introduc-
tion of algebraic constants, was motivated by the advent of computer algebra sys-
tems [5,29]. The first step involves extracting the rational part of (18) by the
method of Horowitz [18,19]. Using Euclid’s algorithm [30] to compute ged(q(t),
q'(t)), we define

0:(t) = ged(q(t).q'(1)) and qz(t)—m

so that

a(t) = di()az(t). (19)
We may assume, without loss of generality, that g,(t) is a monic polynomial (i.e.,
that its highest-order coefficient is 1). Note that the roots of q;(t) are the multiple
roots of q(t). Specifically, if z is a root of g of multiplicity m > 2, then it is a root of q,
of multiplicity m — 1. Moreover, each of the distinct (simple or multiple) roots of q(t)

is a simple root of g (t).
We seek polynomials p;(t), po(t) such that p(t)/q(t) can be expressed as

P
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The integral on the right in (22) is the transcendental part. If deg(g,) = N, then

(1) has distinct roots z;, . ..,zy and the integrand has the complete partial fraction
decompositiq
) M ¢
P2 (t) _ k (23)

Q2(t) kel t—z ’
and hgnce we hav{

N
PaAt) 4 celn(t — z).

qZ(t) k=1
Since p,(t) and g, (t) are real, complex terms in this sum occur in conjugate pairs, and
may be combined to yield explicitly real expressions.

In general, the roots zy,...,zy are algebraic numbers that do not admit exact, fi-
nite decimal representations. In floating-point arithmetic, they must be approxi-
mated. A “defect” of the complete partial-fraction decomposition (23) is that it
employs all these roots, although the integral may ultimately be expressible in a form
that does not require all of them.

The following approach, due to Rothstein [26] and Trager [27], evaluates such in-
tegrals with a minimal algebraic extension of the set of constants. Let f(t), g(t) be
polynomials satisfying deg(f) < deg(g), ged(f,g) = 1, with g(t) monic and square-

free. Then if cy,...,cy are the distinct roots of
h(c) = Resultant,(f (t) — cg’(t),g(t)) =0 (24)
we hafe Z
f(t) "
—=dt= Cy In v (1),
0 G k(t)

where the polynomials v;(t),. .., v(t) are defined by

v (t) = ged(F () — ceg'(t), 9(t)).
Apart from the need for a numerical determination of the roots of (24), this method
is essentially exact for rational functions of arbitrary order.

4. Frames for PH cubics and quintics

In principle, the procedure described in Section 3 allows rotation-minimizing
frames to be computed for PH curves of arbitrary order. We now give more specific
details for the PH cubics and quintics. The former admit a particularly simple closed-
form reduction, but in general PH cubics do not offer sufficient shape flexibility for
free-form design applications. The PH quintics are a little more involved, but provide
much greater geometrical versatility.

PH cubics are constructed by inserting four linear polynomials, expressed in the
Bernstein form u(t) = up(1 —t) +u;t and similarly for v(t), p(t), q(t), into (10),
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and integrating the hodograph. In this case, [r'(t) x r’(t)] - r”(t) and p(t) are both
constants, and their ratio is the quantity

k = 2(UpVi — UiV — Poli + PiGo)-

The orientation of the rotation-minimizing frame relative to the Frenet frame is thus
defined by the function

tdr
o (1)’
where the parametric speed is the quadratic

o(t) = ao(1 —1)° + 012(1 — t)t + oot

0(t) = 0, — k

with Bernstein coefficients
o = Uy + Vg + Pg + U,
o1 = UpU; + VoVi + PoP1 + od1,

g =W +V+p’

Hence [16] we have

o) = 0o+ LK (2= M+ ou)tt o~

67 — 0002 07 — 6002

or

/ k 1 (0'2—24/1+0'0)t+0'1—0'0
tan
0002 — 07 0002 — 07

according to whether 7 — g0, is positive or negative.

PH quintics are defined by inserting four quadratic polynomials, u(t) =
Uo(1 —t)* + u;2(1 — t)t + u,t? and similarly for v(t), p(t), q(t), into (10), and integrat-
ing. In this case, [r'(t) x r’(t)] - r"'(t) is of degree 6, while p(t) and o(t) are quartics.
We use the form (17), where a(t) and b(t) are determined by solving the linear system
defined by Eq. (15).

We begin by dividing the numerator and denominator of the integrands in (17) by
the highest-order coefficient of the denominator, so we can assume that ¢(t) and p(t)
are monic. These two quartics can be explicitly factorized by invoking Ferrari’s
method [30] to compute their roots (see Appendix A). If we denote these roots by
21,2>,23,Z4 and Wi, Wy, W3, Wy, respectively, the coefficients ¢;,C,,C3,¢4 and
di,d,,ds, dy Ethe partial fraction expEsions

4 4
w — Ck and @ — dk
G(t) kel t—z p(t) kel T — wy

can be found by clearing the denominators, and setting t equal to each of the roots in
succession, to obtain
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a(z) b(wi)
[ju(z—1z) [jac (Wi — w;)
fork=1,...,4. Eegration then gives

4
0t) =0p—  ccln(t —z) + dy In(t — wy).
k=1

Ck = and dy =

Now since g(t) and p(t) are real polynomials, their complex roots must occur as
conjugate pairs, and the corresponding partial-fraction coefficients are also complex
conjugates. Logarithmic terms that correspond to such pairs can be combined to give
explicitly real expressions: for example, if z, Z and ¢, C are conjugate roots and co-
efficients, we have

cln(t—2z)+cln(t —z) = 2[Re(c) In |t — z| — Im(c) arg(t — z)].

Here arg(t — z) must be interpreted as a continuous function—i.e., it should not be
reduced modulo 27.

Example. Consider the PH quintic with r(0) = (0,0, 0) and Bernstein coefficents (U,
u17 UZ) = (27 072)9 (VOavlaVZ) = (17 17 0)9 (pOa pla pz) = (07 _27 0)9 (q07 q17q2) = (13 23 1)
for the quadratic polynomials in (10). In this case,
[F(t) x " (t)] - ¢ (t) = 16032t° — 49152t° + 74592t* — 66560t
+ 32256t> — 6912t — 576

and

a(t) = 37t* — 726 + 461> — 12t + 6,

p(t) = 80t* — 544t> + 3376t — 29761 + 720.
The partial fraction decomposition (16) is then defined by the polynomials
a(t) =8> — 8t and b(t) = 416t — 384t — 96.
Ferrari’s method (see Appendix A) then gives
21,Z, = 0.012018388019 + 0.3944403549011
Zy,Z, = 0.960954584954 + 0.3433444238531
and
wi, W, = 0.493692520439 + 0.0693028556621
Wy, Wy = 2.906307479561 + 5.2693028556621

for the roots of a(t) and p(t). The corresponding partial fraction coefficients, ob-
tained from (25), are

€1, = —0.096099539514 F 0.0301852141631
C2,Cy = 0.096099539514 F 0.0145903344261
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where the integration constant 6, may be chosen such that 0(0) = 0. Fig. 1 compares
the variation of the Frenet and rotation-minimizing frames along the example PH
curve. A quantitative comparison is presented in Fig. 2, which shows the instanta-
neous rates of rotation for both frames—namely, w = v/x? + 72 for the Frenet frame,
and « for the rotation-minimizing frame. It is apparent that, compared to the ro-
tation-minimizing frame, the motion of the Frenet frame incurs a great deal of
“unnecessary’’ rotation.

5. Closure

For applications such as computer animation, robotics, and construction of
swept surfaces, in which the computation of rotation-minimizing frames plays a
key role, the spatial PH curves offer exact solutions that obviate concerns over
the accuracy, efficiency, and data volume of approximation schemes. For PH cu-
bics and quintics, in particular, integration of the torsion to obtain the relative ori-
entation of the rotation-minimizing and Frenet frames involves a partial-fraction
decomposition of rational functions with (at most) quartic denominators, which
admit complete factorization through the determination of their roots by radicals.
The resulting angular function 0(t) specifying the rotation-minimizing frame com-
prises, in general, a rational function plus a sum of logarithmic terms. The method
can, in principle, be extended to PH curves of higher order with minimal introduc-
tion of new algebraic constants. There is also a quite straightforward extension to
PH spline curves.
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Appendix A. Ferrari’s method for quartics

The four roots of the quartic equation
t4+a3t3+a2t2+a1t+a0:0 (Al)

may be computed by Ferrari’s method [30]. Namely, let z be a real root of the re-
solvent cubic equation

P4+t +cz+c=0 (A.2)
with ¢; = —a,, €; = a,8; — 4a, and ¢y = 4a,8) — a7 — a3a. Then the roots of (A.1)
are the same as the roots of the two quadratic equations

'+ (Jas £ E)t+ (2£F) =0, (A3)
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where we define
a3z — 2a,;

E=1 al+4(z—a) and F = iE (A.4)
The roots of the cubic (A.2) may be obtained by Cardano’s method [30]. Set
3¢ —¢ 9c,c, — 27¢y — 263 P
Q 9 ) 54 Y Q + )
and let S be any of the three complex values specified by
1/3
S— (R + m) . (A.5)
Then, writing
A:S—9 and B:S+97 (A.6)
S S
the roots of (A.2) are given by
S~ = %CZ + A7
z ! —1lc; 1A +1V3iB, (A7)

b i —lA-LV3iB.

[
One of the roots (A.7) is real and the other two are complex conjugates when A > 0;
all three roots are real and distinct when 4 < 0; and when 4 = 0 there is a multiple
root. Note that, even if all three roots are real, complex arithmetic is generally re-
quired to evaluate the quantities (A.5)—(A.7), and also to compute (A.4) and the
roots of the quadratic equations (A.3).
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