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A rational quartic Bézier representation for conics
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Abstract

This paper presents a special representation for conic sections in the form of a rational quartic Bézier curve
which has the same weight for all control points but the middle one. This representation allows a conic section
to be joined with other conics in the same form or other integral B-spline curves in a way that the joined curve
still possesses C1 continuity in the homogeneous space, which is not possible if rational quadratic representation is
adopted. This also allows the creation of skinned surfaces from section curves containing conic sections to possess
better parametrization and curvature property. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Conic sections are widely used for computer-aided design and manufacturing in various industries.
A significant reason for using NURBS for shape representation is their ability to represent conic sections
precisely. Traditionally, conic sections, when represented by NURBS, are in the form of a rational
quadratic Bézier curve. The standard form of this representation can be written as

r(t) = B2,0(t)p0 + B2,1(t)wp1 + B2,2(t)p2

B2,0(t) + B2,1(t)w + B2,2(t)
, t ∈ [0,1], (1)

where p0,p1,p2 ∈ R
2 are the control points,w ∈ R is the weight associated withp1, B2,0(t) =

(1 − t)2, B2,1(t) = 2t (1 − t), B2,2(t) = t2 are the Bernstein basis functions. With this representation,
the type of conic is characterized by the value of the middle weight,w: r(t) is an ellipse whenw < 1, a
parabola whenw = 1 and a hyperbola whenw > 1. Also, whenw is negative,r(t) is the complementary
segment of the original conic segment (see (Lee, 1987) and (Farin, 1993)).
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In the literature, conic sections have been extensively studied. Several rational representations for
circular arcs, a special kind of conic section, are described in (Piegl and Tiller, 1989). A very detailed
study on conic sections, in the form of a rational quadratic curve, is presented in (Lee, 1987). In (Wang
and Wang, 1992), the necessary and sufficient conditions for representing conic sections by the rational
cubic Bézier curve with proper parametrization are discussed. In (Chou, 1995), the possibility of using a
single Bézier curve to represent a full circle is studied and it was proven that it requires at least a degree 5
Bézier curve in order to represent a full circle without resorting to negative weights. In (Sánchez-Reyes,
1997) it was proven that all Bézier circular arcs other than quadratic arcs are degenerate. In (Blanc and
Schlick, 1996) a zigzag reparametrization (actually a quadratic rational reparametrization) is introduced
to make a full circle, represented in multi-segmented quadratic NURBS, to be C2 continuous or to be
quasi-uniformly parametrized.

1.1. A common design problem

The rational quadratic Bézier form is an elegant way to represent conic sections; however, representing
conic sections in rational quadratic Bézier form does not guarantee that two rational quadratic conics,
though C1 continuous at a common joint in the Euclidian space, will remain C1 continuous in the
homogeneous space. In fact, most of the time, they are only C0 in the homogeneous space because of the
different weights associated with the control points closest to the joint and at the joint (see Appendix A
for a study on this continuity issue). This characteristic has caused the rise of a serious problem in the
downstream surface creation using techniques such as skinning or lofting.

Fig. 1(a) shows four quadratic curves, each of which is formed by concatenating two conic sections.
They are all C1 continuous in the Euclidian space with a double knot att = 1/2 (see Appendix B for the
data for control points and weights). Using these four curves as section curves for skinned surface creation
resulting in the surface shown in Fig. 1(b). The surface is not only badly parametrized, its isoparametric
curves in theu-direction (the direction of the section curve) are C0 continuous only. Therefore, despite
the fact that all section curves are C1 continuous, the resulting skinned surface exhibits creases and is
generally C0 continuous only! This is completely unacceptable from a designer’s point of view.

This phenomenon, referred as surface crease problem thereafter, is a general issue with the current
skinning or lofting surface creation. It could emerge whenever one or some of the section curves
are rational and are not C1 continuous in both the Euclidian and the homogenous spaces. Due to the
rationality of section curves, the skinned surface construction is forced to take place in the homogeneous
space. However, these section curves are C0 only in the homogeneous space. Consequently, the
constructed surface is also C0 continuous in theu-direction and so are theu-direction isoparametric
curves.

This problem was previously addressed in (Hohmeyer and Barsky, 1991) and (Tokuyama and Konno,
2001). Hohmeyer and Barsky used asmoothing function to improve the continuity of the given rational
B-spline curves in the homogenous space. However, there is no general algorithm to determine the
smoothing function and the resulting skinned surface might be raised to a higher degree. Tokuyama
and Konno tried to reparametrize the given rational B-spline curves by solving a nonlinear equation
set to achieve the C1 continuity in the homogenous space. However, there is also no guarantee that
the reparametrization will success. In fact, the reparametrization fails when the rational B-spline curve
contains two 90-degree arcs. Furthermore, the resulting skinned surface might possess too many small
patches since the knot vectors of the given section curves are altered by the reparametrization process.
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(a)

(b)

Fig. 1. The rational quadratic section curves and the resulting skinned surface. The surface is badly parametrized and the
isoparametric curves exhibit C1 discontinuity. (a) The four C1 continuous section curves in the form of quadratic NURBS.
(b) The resulting skinned surface.
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1.2. The motivation

Instead of trying to solve the surface crease problem arising from skinning through general rational
section curves, we focus our effort on the cases where the section curves contain only conic sections and
integral Bézier curves. For such section curves, their C1 discontinuities in the homogeneous space come
from representing conics in the rational quadratic Bézier form. Therefore, a resolution is to look for a
different rational Bézier representation for conic sections that do not make the section curve become C0

in the homogeneous space. An easy way to achieve this goal is to force this new Bézier representation to
have the same weight for the first two and the last two control points, which makes it at least degree 4.
Therefore, our task becomes finding a representation for conic sections in the form of rational quartic
Bézier curve, which has the same weights for all the control points except the middle one. If a conic
section can be represented in this manner, joining a conic section with other conic sections in the
same form or with other integral B-spline curves will result in a curve that is still C1 continuous in
the homogeneous space. This work is inspired by the work described in (Allen, 1993) where the study
only focused on circular arcs, instead of general conic sections.

Although the proposed approach is only applicable when the section curves contain only conic sections
and integral Bézier curves, given the fact that polynomial curves remain the dominant form for curves
modeling and rational curves are mainly used to model conic sections (and circular arcs), this approach
should suffice for practical purpose.

The rest of this paper is organized as follows. In Section 2 we obtain the representation for conic
sections in the rational quartic Bézier form given its rational quadratic Bézier representation. The
solutions are analyzed in Section 3. Some examples are given in Section 4 and conclusion is made in
Section 5.

2. Rational quartic Bézier conic

2.1. Conversion from rational quadratic conic to rational quartic conic

Given a standard rational quadratic conic section described by (1), the goal of this paper is to see if we
can represent this conic section as a rational quartic Bézier curve, written as

r̄(t) = B4,0(t)p̄0 + B4,1(t)p̄1 + B4,2(t)w2p̄2 + B4,3(t)p̄3 + B4,4(t)p̄4

B4,0(t) + B4,1(t) + B4,2(t)w2 + B4,3(t) + B4,4(t)
= R(t)

W(t)
, t ∈ [0,1] (2)

where p̄i , i = 0, . . . ,4, are the control points,w2 is the weight associated with̄p2, and B4,i(t) =(
4
i

)
(1 − t)4−i t i , i = 0, . . . ,4, are the Bernstein basis functions. Here, we reparametrize the weights

so that all of them but the middle weight are 1.
For r̄(t) to be geometrically equivalent tor(t) in (1), it is obvious that̄r(t) needs to be G1 continuous

with r(t) at the end points. Therefore, we can represent the control points ofr̄(t) via the control points
of r(t) as

p̄0 = p0, (3a)

p̄1 = p0 + α0(p1 − p0), (3b)

p̄2 = L0p0 + L1p1 + L2p2, (3c)
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p̄3 = p2 − α1(p2 − p1), and (3d)

p̄4 = p2, (3e)

whereα0 andα1 are arbitrary constants,Li, i = 0,1,2, are the barycentric coordinates ofp̄2 with respect
to the triangle�p0p1p2 andL0 + L1 + L2 = 1.

Substituting Eqs. (3a)–(3e) into (2), we have

r̄(t) = τ̄0(t)p0 + τ̄1(t)p1 + τ̄2(t)p2 (4)

where

τ̄0(t) = 1

W(t)

(
(1− t)4 + 4t (1− t)3(1− α0) + 6w2t

2(1− t)2L0
)
,

τ̄1(t) = 1

W(t)

(
4t (1− t)3α0 + 6w2t

2(1− t)2L1 + 4t3(1− t)α1
)
, and

τ̄2(t) = 1

W(t)

(
6w2t

2(1− t)2L2 + 4t3(1− t)(1− α1) + t4).
An interesting property ofr(t) is that it remains unchanged when we swap the location ofp0 andp2

and replacet by 1− t . We would liker̄(t) to possess the same property, namely,

r̄(t) = τ̄0(1− t)p2 + τ̄1(1− t)p1 + τ̄2(1− t)p0. (5)

From (4) and (5), we can deduce thatα0 = α1 and L0 = L2. Note that Eq. (5) is not a necessary
condition for r̄(t) to be a conic section; however, applying it will enforce our solutions to possess nice
“symmetry” properties, e.g.,̄p2 will lie on the line connectingp1 and 1

2(p0 + p2) and linep̄1p̄3 will
always be parallel to linep0p2.

Letting α0 = α1 = α andL0 = L2 = (1− L1)/2, the barycentric coordinates ofr̄(t) become

τ̄0(t) = 1

W(t)

(
(1− t)4 + 4t (1− t)3(1− α) + 3w2t

2(1− t)2(1− L1)
)
, (6a)

τ̄1(t) = 1

W(t)

(
4t (1− t)3α + 6w2t

2(1− t)2L1 + 4t3(1− t)α
)
, and (6b)

τ̄2(t) = 1

W(t)

(
3w2t

2(1− t)2(1− L1) + 4t3(1− t)(1− α) + t4
)
. (6c)

Furthermore, it is well known that for any point on a conic sectionr(t), its barycentric coordinates
τ0, τ1, τ2, whereτ0 + τ1 + τ2 = 1, with respect to the triangle�p0p1p2, satisfies

f
(
r(t)

) = τ 2
1 (t) − 4w2τ0(t)τ2(t) = 0. (7)

Therefore, the barycentric coordinates of any point onr̄(t) with respect to the triangle�p0p1p2
should also satisfy

f
(
r̄(t)

) = τ̄ 2
1 (t) − 4w2τ̄0(t)τ̄2(t) = 0. (8)

After substituting (6a), (6b) and (6c) into (8) and performing some tedious algebra manipulation using
Maple, a software for symbolic mathematic manipulation, we obtain a degree 8 rational polynomial oft

f
(
r̄(t)

) = 1

W 2(t)

8∑
i=0

ci t
i , (9)
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where

c0 = 0,

c1 = 0,

c2 = 16α2 + 12w2(L1 − 1)w2,

c3 = −96α2 + 16w2(α − 1) − 24
(
w2(2α + 1)(L1 − 1) − 2αL1

)
w2,

c4 = 272α2 − 4w2
(
16α2 − 12α − 3

) + 60
(
w2(4α − 1)(L1 − 1) − 4αL1

)
w2

− 36
(
w2(L1 − 1)2 − L2

1

)
w2

2,

c5 = −448α2 + 16w2
(
16α2 − 21α + 6

) − 48
(
w2(11α − 6)(L1 − 1) − 11αL1

)
w2

+ 144
(
w2(L1 − 1)2 − L2

1

)
w2

2,

c6 = 448α2 − 8w2(6α − 5)(8α − 5) + 48
(
w2(13α − 9)(L1 − 1) − 13αL1

)
w2

− 216
(
w2(L1 − 1)2 − L2

1

)
w2

2,

c7 = −256α2 + 16w2(4α − 3)2 − 96
(
w2(4α − 3)(L1 − 1) − 4αL1

)
w2

+ 144
(
w2(L1 − 1)2 − L2

1

)
w2

2,

c8 = 64α2 − 4w2(4α − 3)2 + 24
(
w2(4α − 3)(L1 − 1) − 4αL1

)
w2 − 36

(
w2(L1 − 1)2 − L2

1

)
w2

2.

Requiringf (r̄(t)) to be zero means all of its coefficientsci, i = 0, . . . ,8, must be zero. Fromc2 = 0, we
obtain

w2 = 4α2

3w2(1− L1)
. (10)

Substituting (10) intoc3 = 0 results in

c3 = 16w2(α − 1) + 64α2(α − 1) − 64α3L1

w2(L1 − 1)
= 0, (11)

thus

L1 = w2(α − 1)(w2 + 4α2)

w2(α − 1)(w2 + 4α2) − 4α3
. (12)

Substitutingw2 andL1 in (10) and (12) intoci, i = 4, . . . ,8, we obtain

c4 = 64

(
1− 1

w2

)
α4 − 128α3 − 32

(
w2 − 3

)
α2 + 64w2α +

(
4w4 − 36w2 − 8w4

α
+ 4w4

α2

)
, (13)

c5 = −4c4, c6 = 6c4, c7 = −4c4 and c8 = c4.

Therefore, if we can find anα satisfying (13), all the coefficients off (r̄(t)) are zero and the solution for
r̄(t) is found. Whenw �= 1, c4 can be factored as

c4 = 4

w2α2

(
(w + 1)α − w

)(
(w − 1)α − w

)
(2α − w)2(2α + w)2 = 0, (14)

from which the four roots forα are

−w

2
,

w

2
,

w

w − 1
and

w

w + 1
.
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Table 1
Different w2 andL1 values for differentα

α w2 L1

w

2
−1

3
(2w2 − 4w − 1)

2w(w − 2)

2w2 − 4w − 1

−w

2
−1

3
(2w2 + 4w − 1)

2w(w + 2)

2w2 + 4w − 1

w

w + 1

1

3

w2 + w + 4

w + 1

w(w2 + 2w + 5)

(w + 1)(w2 + w + 4)

w

w − 1
−1

3

w2 − w + 4

w − 1

w(w2 − 2w + 5)

(w − 1)(w2 − w + 4)

Whenw = 1 wherer(t) is a parabola,

c4 = −128α3 + 64α2 + 64α − 32− 8

α
+ 4

α2
= − 4

α2
(2α + 1)2(2α − 1)3 = 0 (15)

and the two solutions forα are 1/2 and−1/2, which are part of the roots found whenw �= 1.
Substituting each solution forα into Eqs. (10) and (12), we can find the correspondingw2 andL1, thus

the rational quartic Bézier conic sectionr̄(t). Table 1 lists the differentw2 andL1 values for differentα.
Note that above equations are derived based on standard rational quadratic conics. Conversion of non-
standard rational quadratic conics can be done by first converting them to standard form and then applying
above equations.

The rational quartic Bézier conic section resulting fromα = w/(w + 1) can also be obtained from the
result presented in (Blanc and Schlick, 1996) where the rational quadratic Bézier conic is reparametrized
by a rational quadratic polynomial, characterized by a scalar variablep. However, there are two aspects
that distinct the presented article with the work by Blanc:

• This paper restricted the rational quartic Bézier curve to take the special form as depicted by (2) and
solves the implicit equation of conic sections (Eq. (8)) directly. Therefore, we are able to find the
other solutions which are not shown in (Blanc and Schlick, 1996).

• Our goal is to resolve (or at least alleviate) the surface crease problem when creating skinned
surfaces from section curves containing conic sections. Blanc used their result to obtain a multi-
segment quartic NURBS representation for circular arcs, which are C2 continuous or quasi-uniformly
parameterized. However, the C2 continuity in the Euclidian space does not guarantee the smoothness
of the skinned surfaces created from them since they are still C0 only in the homogeneous space.

2.2. The semi-circle and semi-ellipse

Since semi-circles or semi-ellipses cannot be represented by (1) without using positive weights and
finite control points, we will show that rational quartic Bézier form is capable of representing semi-circles
or semi-ellipses without resorting to zero weights by following the same example given in (Farin, 1993).

Let a conic be given byp0 = [−1,0]T, p2 = [1,0]T, p1 = [0, tanθ]T and the middle weight
w = ccosθ , where θ = � p1p0p2 and c is an arbitrary constant. When converting this conic from
quadratic form to quartic form, it can be written as
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c(t) =
(1− t)4

[ −1
0

]
+ 4t (1− t)3

[
α − 1
α tanθ

]
+ 6w2t

2(1− t)2

[
0

L1 tanθ

]

(1− t)4 + 4t (1− t)3 + 6w2t
2(1− t)2 + 4t3(1− t) + t4

+
4t3(1− t)

[
1− α

α tanθ

]
+ t4

[
1
0

]

(1− t)4 + 4t (1− t)3 + 6w2t2(1− t)2 + 4t3(1− t) + t4
. (16)

Substitutingα = w/(w + 1) and correspondingL1 andw2 to c(t) and letθ approachπ/2, c(t) becomes

c(t) =
(1− t)4

[ −1
0

]
+ 4t (1− t)3

[ −1
c

]
+ 8t2(1− t)2

[
0
5
4c

]
+ 4t3(1− t)

[
1
c

]
+ t4

[
1
0

]

(1− t)4 + 4t (1− t)3 + 8t2(1− t)2 + 4t3(1− t) + t4
(17)

whose control points are
 x

y

w


 =


 −1

0
1


 ,


 −1

c

1


 ,


 0

5
4c
4
3


 ,


 1

c

1


 ,


 1

0
1


 .

Substitutingα = w/2 and correspondingL1 andw2 to c(t) and letθ approachesπ/2, we obtain

c(t) =
(1− t)4

[ −1
0

]
+ 4t (1− t)3

[ −1
1
2c

]
+ 2t2(1− t)2

[
0
4c

]
+ 4t3(1− t)

[
1
1
2c

]
+ t4

[
1
0

]

(1− t)4 + 4t (1− t)3 + 2t2(1− t)2 + 4t3(1− t) + t4
(18)

whose control points are
 x

y

w


 =


 −1

0
1


 ,


 −1

1
2c

1


 ,


 0

4c
1
3


 ,


 1

1
2c

1


 ,


 1

0
1


 .

For c = 1, we obtain a unit semicircle; other values ofc result in semi-ellipses. We can see that in either
Eq. (17) or (18), all the weights are positive, thus preserving the convex hull property.

3. Analysis

In the previous section we had shown that there are generally four solutions forr̄(t) for a given value
of w. Since Eq. (8) is the implicit form of the conic section, it is perceivable that some solutions could
lead to the complementary segment ofr(t) instead ofr(t) itself. Therefore, we should limit the desired
solution r̄(t) to be on the same side of triangle�p0p1p2 asr(t) is. Furthermore, the desired solution
r̄(t) should also contain nonnegative weights only since negative weights will destroy the convex hull
property of NURBS curves.

Whether r(t) or r̄(t) is inside or outside the triangle�p0p1p2 can be easily judged from the
direction of its first derivative att = 0. For rational quadratic conics, we haver ′(t = 0) = 2w(p1 − p0).
Therefore,r(t) lies inside triangle�p0p1p2 when w is positive and outside the triangle whenw is
negative. Similarly, we havēr ′(t = 0) = 4(p̄1− p̄0) = 4α(p1−p0) for the rational quartic Bézier conics.
Therefore,̄r(t) is inside triangle�p0p1p2 whenα is positive and outside the triangle whenα is negative.
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(a) (b)

Fig. 2. Theα (in solid line) andw2 (in dashed line) as functions ofw. (a)α = w/2. (b)α = w/(w + 1).

For the solutionα = w/2, the resultinḡr(t) will always be on the same side of triangle�p0p1p2 as
r(t) is sinceα andw always have the same sign. However,w2 is nonnegative only when(2− √

6)/2 �
w � (2+ √

6)/2 (as shown in Fig. 2(a)), which means this solution is desirable only whenw falls in this
range. For the solutionα = w/(w + 1), α andw have the same sign andw2 is positive as long asw > −1
(as shown in Fig. 2(b)). This means that we can represent a much broader range of conic sections (with
all positive weights) usingw/(w + 1) than usingw/2.

The solutionsw/(w − 1) and−w/2 can be obtained by replacingw by −w in w/(w + 1) andw/2.
This means that the curves resulting fromw/(w − 1) and−w/2 are simply the complementary segments
of the curves resulting fromw/(w + 1) andw/2 correspondingly.

For convenience, we denote, thereafter, the solution resulting fromα = w/2 andα = w/(w + 1) as
r̄1(t) andr̄2(t) respectively. A few notes are in order.

• r̄1(t) has exactly the same parametrization as the rational quadratic conic. This can be proven by
substitutingα = w/2 and correspondingL1 andw2 into Eqs. (6a)–(6c). We find that the barycentric
coordinates of̄r1(t) have a common factorH(t) in the numerators and denominators as shown
below:

τ̄0(t) = (1− t)2H(t)

((1− t)2 + 2wt(1− t) + t2)H(t)
= (1− t)2

(1− t)2 + 2wt(1− t) + t2
, (19a)

τ̄1(t) = 2wt(1− t)H(t)

((1− t)2 + 2wt(1− t) + t2)H(t)
= 2wt(1− t)

(1− t)2 + 2wt(1− t) + t2
, (19b)

τ̄2(t) = t2H(t)

((1− t)2 + 2wt(1− t) + t2)H(t)
= t2

(1− t)2 + 2wt(1− t) + t2
, (19c)

whereH(t) = (2w − 2)t2 − (2w − 2)t + 1.
After canceling outH(t), the rational quartic Bézier form is reduced to the rational quadratic form.

• The emergence ofH(t) in both the numerators and denominators of (19) suggests that it is acting as
a smoothing function that scalesrw(t), the homogeneous counterpart ofr(t), up or down the four-
dimensional cone defined byr(t) so thatH(t)rw(t) could acquire C1 continuity in the homogeneous
space. Since bothrw(t) andH(t)rw(t) are on the four-dimensional cone, their projections to the
w = 1 plane, i.e.,r(t) andr̄1(t), are exactly the same.
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• r̄2(t) can also be obtained by reparametrizing the original rational quadratic Bézier form by a rational
quadratic polynomialS(t), where

S(t) = pt + (1− p)t2

1− 2(1− p)t + 2(1− p)t2
with p = 2

1+ w
. (20)

This is a direct result from (Blanc and Schlick, 1996). The resulting barycentric coordinates are

τ̄0(t) = (1− t)2((w − 1)t − (w + 1))2

2(w + 1)(w − 1)2t2(1− t)2 + (w + 1)2
, (21a)

τ̄1(t) = −2wt(1− t)((w − 1)t + 2)((w − 1)t − (w + 1))

2(w + 1)(w − 1)2t2(1− t)2 + (w + 1)2
, (21b)

τ̄2(t) = t2((w − 1)t + 2)2

2(w + 1)(w − 1)2t2(1− t)2 + (w + 1)2
. (21c)

• When−1< w < 0, r̄2(t) is the complementary segment of the elliptical arc inside triangle�p0p1p2
and the middle weight for̄r2(t) is always positive. As� p0p1p2 approaches 180 degree,r̄2(t)

approaches a full ellipse with all weights positive. However,r̄2(t) is never able to represent a full
ellipse. This finding matches to the statements in (Chou, 1995) that it is impossible to have a quartic
Bézier full circle with all positive weights.

• According to (Sederberg, 1986),r̄2(t) is “improperly parametrized”. However, as bad as the term
“improperly parametrized” may sound, the parametrization ofr̄2(t) is generally better than that of
r̄1(t) and the rational quadratic counterpart, as shown in next section.

• In (Sánchez-Reyes, 1997), it has been proven that “all Bézier circular arcs other than quadratic arcs
are degenerate, that is, improperly parameterized and/or degree-reducible”. Since the proof, utilizing
the concept of algebraic geometry, is applicable to any planar rational parametric curves that admit an
implicit polynomial equationf (x, y) = 0, the above statement should also be applicable for general
conic sections. Although without providing a more rigorous proof, this conjecture is supported by the
fact that both̄r1(t) andr̄2(t) are either improperly parameterized or degree-reducible to the rational
quadratic form.

4. Examples

Figs. 3(a)–(f) show the different rational quartic Bézier conics with different value ofw. All curves are
produced based on the same base triangle:p0 = [1,0], p1 = [1,1] andp2 = [0,1]. Fig. 3(g) shows the
rational quartic Bézier semi-circle. Control polygons ofr̄1(t) and r̄2(t) are displayed in dark gray and
light gray respectively. Points are sampled at equal parametric values along the curve and are displayed
in the same manner as for the control polygon, i.e., dark grayed points forr̄1(t) and light grayed points
for r̄2(t). The distribution of the slope’s magnitude is also shown in the right side of the conics. Note
that the parametrization ofr̄1(t) is exactly the same asr(t). It can also be seen thatr̄2(t) generally has a
more uniform parametrization thanr̄1(t) and the rational quadratic conic.
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(a)

(b)

Fig. 3. Some quartic Bézier conics with different value ofw. r̄1(t), the conic resulting fromα = w/2 is shown in dark gray.
r̄2(t), the conic resulting fromα = w/(w + 1) is shown in light gray. (a)w = −0.5: The conic shown here is an elliptical arc
with angular span 270 degree. Note thatr̄1(t) no longer possesses the convex hull property due to the negative middle weight.
(b) w = 0.5: The conic shown here is the complement of the elliptical arc shown in (a). (c)w = 1.0: r̄1(t) andr̄2(t) are the same
curve, a parabola. (d)w = 1.5: The middle control point of̄r1(t) happens to coincide with its parametric midpoint. (e)w = 2.0:
The control points of̄r1(t) are[1,0], [1,1], [0.5,0.5], [1,1], [0,1], quite an interesting configuration. (f)w = 2.5: Again,
r̄1(t) has negative middle weight becausew is outside the useful range described in Section 3. (g) The rational quartic Bézier
semi-circle.

Fig. 4 shows the same section curves as in Fig. 1 and the resulting skinned surface. The difference is
that conic sections are converted into rational quartic Bézier curves (using theα = w/(w + 1) solution)
for concatenation. The section curves are now C1 continuous at the junction in the homogeneous space.
Notice that the control points at the junctions no longer exist because of the knot removal performed in
the curve concatenation process. As a result, the skinned surface possesses much better parametrization
and continuity.
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(c)

(d)

(e)

Fig. 3. (Continued).
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(f)

(g)

Fig. 3. (Continued).

5. Conclusion

A rational quartic Bézier representation for conic sections is presented. This rational quartic Bézier
curve has the same weight for all control points but the middle one, thus allowing the conic section
to be joined with other conic sections (in the same representation) or integral B-spline curves with
C1 continuity in the homogeneous space. This will allow skinned surfaces created from section curves
containing conic sections in the downstream operations to possess better parametrization and curvature
property.
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(a)

(b)

Fig. 4. The rational quartic section curves and the resulting skinned surface. Notice that not only the isoparametric curves are
C1 continuous, the surface’s parametrization is greatly improved as well. (a) The four C1 continuous section curves in the form
of quartic NURBS. (b) The resulting skinned surface.
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Appendix A. Study of the continuity

Given two rational quadratic Bézier conicsc1(t) and c2(t), where c1(t) is defined byP i and
wi, i = 0,1,2, c2(t) by P i andwi, i = 2,3,4, andwi are the weights associated withP i , the joined
curveC(t) can be represented as a rational quadratic B-spline curve with the same set of control points,
weights and knot vector[0,0,0, h, h,1,1,1]. Note that the value ofh changes only the parametrization
but not the shape ofC(t). The C1 continuity ofC(t) at t = h requires

2w1

w2h
(P 2 − P 1) = 2w3

w2(1− h)
(P 3 − P 2), (A.1)

which results in

P 2 = αP 3 + (1− α)P 1, 0< α < 1, (A.2a)

h = αw1

αw1 + (1− α)w3
. (A.2b)

The C1 continuity ofCw(t), the counterpart ofC(t) in the homogeneous space, att = h requires

2

h

(
P w

2 − P w
1

) = 2

(1− h)

(
P w

3 − P w
2

)
, (A.3)

whereP w
i = wiP i , are the counterparts ofP i in homogeneous space. This results in{

w2P 2 = hw3P 3 + (1− h)w1P 1,

w2 = hw3 + (1− h)w1.
(A.4)

From (A.2) and (A.4), we have the following remarks:

• C(t) is generally C0 continuous only even if (A.2a) is satisfied. It becomes C1 continuous only under
a specific parametrization, i.e., the interior knoth is specified as in (A.2b).

• The value ofw2 only affects the C1 continuity forCw(t) but not forC(t).
• The C1 continuity of Cw(t) ensures the C1 continuity of C(t) since satisfaction of (A.4) will

guarantee the satisfaction of (A.2).
The C1 continuity of C(t) does not ensure the C1 continuity of Cw(t) since satisfaction of (A.2)
does not guarantee the satisfaction of (A.4). To achieve the C1 continuity of Cw(t), the following
additional condition is required:

w2 = w1w3

αw1 + (1− α)w3
. (A.5)

From (A.5) we can also see that having the same value forw1,w2 andw3 is the easiest way (but not
the necessary way) forCw(t) to be C1 continuous.
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Table B.1

Control points Weights

C0(t) {0,−1,0}, {0,0,0}, {1,0,0}, {1,2,1,1,1}
{3,0,0}, {3,1,0}

C1(t) {0,−1,1.5}, {0,0,1.5}, {2.25,0,1.5}, {1,1,1,3,1}
{3,0,1.5}, {3,1,1.5}

C2(t) {0,−1,3}, {0,0,3}, {1.5,0,3}, {1,1,1,1,1}
{3,0,3}, {3,1,3}

C3(t) {0,−1,4.5}, {0,0,4.5}, {1,0,4.5}, {1,4,1,2,1}
{3,0,4.5}, {3,1,4.5}

Appendix B

The control points and the weights for the section curves used in producing Fig. 1 are listed in
Table B.1 for readers who are interested to reproduce this example.

All four curves have the same knot sequence:{0,0,0, 1
2,

1
2,1,1,1}.
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