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Abstract 

This paper presents methods for approximating circular arcs using quintic polynomial curves. 
Different boundary conditions are considered in the approximation methods, thus resulting approxi 
mation curves with G ~, G 3, or  G 4 continuities at the circular arc's ends. The resulting approximation 
radial errors are generally very small and converge at the eighth or tenth power of the circular 
arc's angular span. © 1998 Elsevier Science B.V. 
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1. Introduct ion 

Approximating circular arcs by polynomial  curves is a fundamental issue in the prac- 
tice of  computer-aided design. A polynomial  representation for circular arcs is not only 
simpler for the rendering and curve-curve  intersection problems, it is of special interest 
to the aircraft and the automobile industries where surfaces are frequently constructed 
from curves involving circular arcs using lotting or skinning techniques. In such a sur- 
face construction procedure, it is necessary to represent circular arcs in the NURBS form, 
which often makes the circular arcs become only C I and G 2 continuous (but not (,e) 
due to the presence of interior knots with high multiplicity. This continuity reduction will 
be inherited onto the constructed surface, thus causing undesired creases. Approximating 
circular arcs by polynomial  curves allows the constructed surfaces to have higher degree 
of continuity along interior patch boundaries. When the major purpose of approximating 
circular arcs is to facilitate the downstream processes, the approximating curve is often 
required to interpolate the given arc's end points and end tangents to ensure that multiple 
approximating curves can be joined with at least (;1 continuity. 
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In this paper, a systematic approach for the approximation of circular arcs using quintic 
polynomials will be presented. The radial approximation error is first analyzed, and 
different boundary conditions are enforced, thus resulting approximation curves with G 2, 
G 3, or G 4 continuities at the circular arc's ends. Some methods will produce quintic 
curves that are C 2 joinable. The approximation accuracy and the convergence rate for 
each method are also evaluated in terms of the radial error and two auxiliary error 
measurements: the error in curvature and the error in curvature's variation. 

The rest of the paper is organized as follows. After a review of the literature in circular 
arc approximation in Section 2, Section 3 gives some preliminary descriptions about the 
circular arc, the approximating curve in the Bdzier form and the compatibility equations 
for G 2, G 3 and G 4 continuities. Section 4 gives the analytic derivation and analysis of 
the radial approximation error and Section 5 describes several methods for approximating 
circular arcs using quintic polynomial curves. Section 6 gives the numeric results on the 
radial error and the auxiliary error measurements. 

2. Literature review 

Most of the previous work on circular arc approximation is based on cubic polynomial 
curves. A popular method is to force the parametric mid-point of a cubic curve, matching 
the arc's end points and end tangents, to coincide with the mid-point of the arc being 
approximated. To the author's knowledge, the earliest appearance of this method is in 
(Peters, 1974). It was also discussed in (Gossling, 1976) with a rough numerical error 
estimate. In (Blinn, 1987), the result of applying this method on a quarter circle is used to 
improve the performance of circle's rendering since polynomials can be evaluated more 
quickly using the forward differences technique. In (Dokken, 1990; Goldapp, 1991), 
this method received more detailed investigations. Not only the extremal value for the 
radial error and its location are analytically derived, the cubic curve thus created is also 
proven to be always outside the circular arc. They also prove that the optimal G 1 cubic 
approximation curve can be obtained by placing the parametric mid-point slightly to the 
inside of the arc, making the radial error equiosciilate three times. 

The approximation accuracy can be further improved by allowing the cubic curve 
not to match the end tangents or even the end points of the arc (Goldapp, 1991). The 
cubic curve is obtained by solving a nonlinear equation set of two or three variables 
numerically. Although these methods can achieve an approximation with smaller radial 
error, their applications are greatly restricted due to the incurred high computation cost 
and the failure in satisfying the G I continuity requirement. In (de Boor, 1987), a method 
was developed to create a cubic curve interpolating given two points, two tangents and 
two curvatures, and the solution exists only when certain criteria are met. When applying 
this method onto circular arc approximation, the resulting cubic curve is G z continuous 
at the curve's ends; however, the approximation accuracy is much lower than using the 
first method (see Table 4 for a comparison). This is conceivable because the cubic curve, 
when required to interpolate more boundary conditions, does not have as many degrees 
of freedom to match the circular arc's shape. 
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Articles addressing circular arc approximation by quintic polynomial curves are rel- 
atively few. In (B6zier, 1986), a quintic B6zier curve, also interpolating the circular 
arc's end points, end tangents and the mid-point, is given as a good approximation of a 
semi-circle. There is neither derivation nor explanation about how this quintic curve is 
obtained; hence, a generalized formula for approximating arcs of arbitrary angular spans 
is not available. Although approximations of arbitrary arcs can be obtained by subdi- 
viding the approximation curve of  a semi-circle using the de Casteljau algorithm, the 
approximation accuracy will not change and the resulting curve will not match the arc's 
end points and end tangents. Recently, Floater presented a framework for approximating 
a conic section, in the form of a single rational quadratic B6zier curve, by a Hermite in- 
terpolant of odd degree (Floater, 1997). Applying Floater's approach with quintic curves 
on circular arcs, one can find that the resulting curve has G 3 continuity at the ends and 
interpolates the arc's mid-point. In Section 5, we will show that this quintic curve is .just 
one of the three quintic curves satisfying the same geometric conditions. 

3. S o m e  pre l iminary  

Without loss of generality, we assume that the circular arc's center is located at the 
origin of  the coordinate system and the arc is divided into two sectors symmetrically by 
the 9-axis as shown in Fig. 1. A circular arc of  angular span (-) can then be written as 

1 1 
A(u)  = (cosu,  sinu),  *t0= ~ ( r r - ( - ) )  ~<.~t,< ~ ( T r + ( - ) ) =  ul, 0< ( - )~<  rr. (1) 

Only unit circular arcs are considered here. The approximation of circular arcs of arbi- 
trary radii and orientations can be obtained by radial scaling and rotation. Because the 
circular arc is symmetric to the ~j-axis, the approximating curve needs to be symmetric 
to the ;q-axis too. From this symmetry, we can immediately infer some properties of 
the approximating curve, for example, the approximating curve's parametric mid-point 
should lie on the y-axis and the tangent vector at this point should be parallel to the 
:>axis. 

Given a circular arc described by (1), we want to find a quintic polynomial curve that 
is at least G 2 continuous at the curve's ends. For convenience, approximation curves that 
are C ' '  continuous at the circular arc's end points are called G" approximations of the 

Y 

A(u 

X 

Fig. 1. The circular arc to be approximated. 
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Fig. 2. The approximating quintic curve represented in the B6zier form. 

circular arc hereafter. At the beginning, we consider the quintic polynomial curve that 
is only a G j approximation of  the arc. Because of  the curve's symmetry, this quintic 
polynomial curve, represented in the Bdzier form, can be characterized by three scalars: 
p, q, and r as shown in Fig. 2 and is written as 

5 
C ( t ) =  (z(t),y(t))=~-~Bi(5i)(1-t)5-it i, for t ~ [ 0 , 1 ] ;  (2) 

i~0 

where 

Bo = 'sin 0, cos 0), B1 = (sin 0 - pcos  0, cos 0 + p sin 0), B2 = (q, r + cos 0), 

B 3 =  - q , r + c o s 0 ) ,  B 4 = ( - s i n 0 + p c o s 0 ,  c o s 0 + p s i n 0 ) ,  

135= - s i n 0 ,  cos0) and 0 = O / 2 .  

It is well known from the differential geometry that if C(t) and A(u) are G '~ continuous 
at a common point C([) = A(u) ,  their first n derivatives at t = t and u = ~t will be 
related by a connection matrix. The following equation shows such a relationship for G 4 
continuity: 

] 0 0 
= o 

/ 
C t t t t ( { ) J  O~ 4 3(t22 + 4oq oz3 6ct~ct 2 

0 [ A ' ( ~ )  

0 [ A ' (~ t  ) 

0 [ A ' " ( ~ )  

~ La'"('u ) 

(3) 

The (sis in (3) are arbitrary constants. The connection matrix for G ~ (n ~< 3) continuity is 
just the submatrix formed by the first n rows and first ~z columns of  the lower triangular 
matrix in (3). Therefore, for a G 1 approximation curve described by (2), we have oq = 5p. 
If  C(t) is a G 2 approximation curve, the second derivative of  C( t )  at t = 0 have to 
satisfy 

C"(O) = c~A" (Uo) + ct2A' (uo). (4) 



L. Fang / Computer Aided Geometric Design 15 (1998) 843-861 847 

The equation for C " ( 1 )  is similar due to the curve 's  symmetry, hence, is not shown here. 
The :c and ! /components  of  (4) give 

20(q - sin 0 + 2p cos 0) = - ~  sin 0 -- (~2 cos 0. 15a) 

20(~' - 2p sin 0) = - c ~  cos 0 q- <~2 sin 0. 15b) 

Taking (5a) x sin0 + (5b) x cos0,  (5a) x c o s 0 -  (5b) × sin0 and using {*L = 5p, we have 

5 , 
q s i n 0  sin 2 0 + r ' cos0  + ~l) ~ = O, (6) 

and 

(~2 = 2 0 ( r s i n 0  + s i n 0 c o s 0 -  q c o s 0 -  2p). (7t 

Eq. (6) can be called the compatibi l i ty equation for G 2 continuity because p, q and r 
have to satisfy this equation to make C(t) a G 2 approximation curve. Following the 
same procedure, we can also find the compatibi l i ty equations for G 3 and (~j4 continuities 
as  

2( s in20  2qsinO-r'cosO) +5t)(rs inO+sinOcosO- q c o s 0 ) -  10/) 2 = 0  (8l 

and 

375p 4 + 1680i) 2 + 4 8 ( - 2 9  sin 0 cos 0 -r 40q cos 0 - 30r sin O)p 

+ 240sin20(r +cosO)2 +48cosO(1 lOqsinO)(r +cosO) 

+ 48(5q 2 cos 2 0 + 5qs in0  + cos 2 0 -- 4) = 0. (9) 

A spline approximation of a circular arc can be obtained by splitting it into segments, 
approximating each segment with a B6zier curve and then joining each approximating 
B6zier curve together. Enforcing G 1 continuity at the segment 's  ends allows the approxi- 
mating B6zier curves to be joined to a C I continuous B-spline curve. However,  enforcing 
(;2 continuity at the segment 's  ends does not necessary guarantee a (72 B-spline curve, 
unless all the segments have the same angular spans. When G 3 approximation curves 
can be jo ined together, forming a C 2 B-spline curve of the same degree, they are said to 
be (xz joinable hereafter. 

4. The  radial error 

The approximation accuracy is usually evaluated by the radial error defined as 

5c(t) = x/:r2(t) + 92(t) -- 1 or Or(t) = :r2(t) + !J2(t) - 1. 10) 

Both functions have their zero sets and extremal values at the same locations; however, 
using ©r(t) is preferable since there is no square root term involved. It can be shown 
that when :o,.(t) is small, then 6,,(~) ~ 2G.(t). In this paper, the term "'radial error" will 
be interchangeably used to indicate both @~-(~) and ~-,,(t). 

The components  z(t) and p(t)  of  the quintic B6zier curve given in (2) are 
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x,(t) ---- (1 - t) 5 sin 0 + 5(sin 0 - p c o s  0) t ( l  - t) 4 -c 10qt2(1 -- t) 3 -- 10qt3(1 -- t) 2 

+ 5(p COS 0 -- sin 0)t4(1 -- t) -- t5 sin 0, (1 l a) 

y(t) = (1 - t) 5 c o s 0  + 5 ( cos0  + p s i n 0 ) t ( 1  - t) 4 + 1 0 ( r ' +  cos0)  

x It2(1 - t)3 + t 3 ( 1  - t ) 2 1  +5(psinO+cosO)t4(1 - t ) +  tScos0 .  ( l l b )  

Since x( t )  and y(t) are quintic polynomials ,  the radial error 0,-(t) becomes a polynomial  
o f  degree 10, and is given as 

q~r.(t) = t2(1 - t )2[A(1 - / ~ ) 6  @ Bt(1  -- t) 5 + Ct2(1 -- t) 4 + Dr3(1 - t)3 

+ Ct4(1 -- t) 2 + B tS( l  -- t) + At6] ,  (12) 

where 

A = 25p 2 + 20q sin 0 + 20( r  + cos 0) cos 0 - 20, (13a) 

B = q ( 8 0 s i n 0  - 100pcos0 )  + (r  + cos 0) (120 cos 0 + 100p sin0) - 120, (13b) 

C = 100q 2 + 10(cos 20 + p sin 20) - 100q(sin 0 - p cos 0) + 100(r  + cos 0) 2 

+ 100(r  + c o s 0 ) ( c o s 0  + p s i n 0 )  - 210; (13c) 

D = 52 cos 20 + 5 0 ( - p  2 cos 20 + 2p sin 20) + 200 [(7" + cos 0) 2 - q2] _ 252. (13d) 

Carefully examining (13a) and (6), we find that A is a multiple of  the left-hand side 
of  (6), which implies that A is zero when C(t)  is a G 2 approximation.  Furthermore,  if 
we substitute the pZ term in (8) and (9) by (4/5)(-qsinO + sin 2 0 -  r cos0)  f rom (6), 
we find that B and C are also multiples of  the left-hand side of  (8) and (9) respectively. 
This means that A a n d / 3  are both zero when C ( t )  is a G 3 approximation and A, B and 
C are all zero when C ( t )  is a G 4 approximation.  These discoveries are not coincidences.  
Actually, they are the direct results f rom the simple theorem stated below: 

If C(t)  is G '~ (0 ~ n <. 4) continuous with the circular arc given by (1) at t ~- {, 
the first n derivatives of ~r (t) will all vanish at t = t and 4,. (f) can be factorized by 
( t  - 

The validity o f  this theorem for rz = 0 is quite obvious and needs no further explanations. 
For  1 ~ n ~< 4, we can rewrite 4),.(t) as ~b~.(t) = C ( t ) .  C(t)  - 1, thus 

i = 0  

and then substitute (3) into ~b(~ n) ({) to replace all the derivatives of  C ( t )  by the derivatives 
of  A(u).  Finally, using the fact that for an unit circular arc A ( u ) ,  the inner product  of  
its derivatives are either - 1 , 0  or 1, we can verify that the first zz derivatives of  qS, (t) 
are all zero at t = {. With this theorem, the above discoveries can be deduced easily. For 
example,  if C(t)  is a G 2 approximation of  the circular arc, qS~(t) will assume the form 
~b~(t) = t3(1 - t )3~( t ) ,  thus forcing A to be zero. 



L. Fang / Computer Aided Geometri{ Design 15 (1998) 843-861 8 4 9  

For now, let's consider the G 2 approximation case, i.e., A = 0 and B ¢; 0, therefore, 
eS,. (Q becomes 

(:,, ( t )  - ? ( 1  - ~)3 [ B ( l  - ~)~ + ( 7 ~ ( 1  - ~)3 

+ Dt2(l  _ f)2 + (7t3(1 _ t) + Bt4]. (14) 

By letting 0',.(Q -- 0, we find that 0,.(t) could have at most five extreme points besides 0 
and 1. They are 

, <  
t l  = ~ - -  - - ] 1 1 ,  112 = ~ - -  - -  

where 

1 1 -(]L-- 
t~1 2 - . ( 2 1 '  p 2 -  2 - . ( 2 2 '  

[-)2 = (4(7 - 4B) + ~f~  and 
6B 

m 

1 
ft2, - .  I tl and 1 t2. 

2 

(4C 4/3) vC-~'J 

6B 

= (4C - 4/3) 2 -- 12B(5D - 2 ( 7 -  10B). 

Note that to ensure that ~1 and t2 are real numbers and are within [0, 1/2]. A must be 
always nonnegative (for 0 ~< 0 <~ rr/2) and I~ and p2 must be within 10, I/4].  

If C( t )  is a G 3 approximation, both A and B are zero, but (7 is nonzero. The ,),(t] 
becomes 

<:,,.U) - ~(l - 04[c(I - ~): + m(l - t) + c>~]. (151 

There are at most three interior extreme points located at 
r 

1 i 1 4 1 1 and 1 
~'~ ~ - -  4 5 2  ;~ 2" 

/ 

where,' ,~ = D/(7 .  To ensure that tl is real and within {0, 1/2], 9 must not be greater than 
6/5. 
If C ( Q  is a (14 approximation, A , / 3  and (7 are all zero, and o~,(t) becomes 

c~,.(t) = DtS(1 - t) -~ 116) 

with its maximum value D / 1 0 2 4  occurred at t 1/'2. 

5. C i r c u l a r  a r c  a p p r o x i m a t i o n  

in this section, we will present several methods for circular arc approximation. The 
approximation methods are categorized by the continuities they achieved. 

5. I. (I 2 approximations 

As, we can see that when C( t )  is a G I approximation, its shape is decided by three 
parameters: p, q and r. If C( t )  is a G 2 approximation, p, q and r are governed by the 
compatibility equation shown in (6), which reduces the number of the shape parameters 
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to two. Because a quintic B6zier curve can be exactly converted into a quintic Hermite 
curve, which shape is determined by the position and the first two derivatives at its ends, 
(ctl, c~2) can also be used as the shape parameters. 

M e t h o d  I 

In the first method, we will use (c~1, o~2) as the shape parameters and simply set c~2 
to zero. This choice is actually not as arbitrary as it might look. We will leave the 
explanation of  its geometric significance to Section 5.4. The remaining parameter C~l, or 
p can be determined by forcing C ( t )  to interpolate the mid-point of  the circular arc at 

= 1/2. As a result, we have 

{ q =  ( 1 - ~ p - ) s i n O - 2 p c o s O ,  (17a) 

r = - ~p2 cos 0 + 2p sin 0 (17b) 

from (5a,b) with c~2 set to zero, and 

8 1 
r = 5(1 - c o s O )  - ~psinO (18) 

fi'om C ( l / 2 )  = (0, 1). Substituting (18) into (17b), we obtain a quadratic equation for p 
a s  

25 cos Op 2 - 50 sin Op + 32(1 - cos O) = 0 (19) 

and the two solutions (for 0 < 0 < ~r/2) are 

s i n O -  ~/(1 - cosO)(1 - ~ cosO) 
and 

Pl = cos 0 

~/ 7 cos0) s i n 0 +  ( l - c o s 0 ) ( 1 -  
P2 = cos 0 

On the other hand, an upper bound for p can be established by substituting (18) into 
cos 0 + r > 1, which is derived from the convex hull property of  B6zier curves, thus 

6(1 - cos0) 6 0 
- - tan - .  (20) 

P < 5 sin 0 5 2 

Therefore, we can reject P2 because it does not satisfy (20). The value of  r can be obtained 
from (17h) or (18) and the value of  q from (17a) subsequently. When 0 = 7r/2 (a semi- 
circle), the quadratic term of (19) vanishes and we obtain (p, q, r) = (0.64, 0.488, 1.28). 

Because of  G'(1/2)  = (0, 1), we have ~ . (1 /2 )  = 0. From (14), this results in 2B + 
2C + D = 0 and ~.  (t) is simplified to 

qS~.(t) = t3(1 - t)3(1 - 2t)2 ICt(1 - t) + B] .  (21) 
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The Taylor expansion of B and C at 0 = 0 give 

13= 1 0 ~ -  1 ~ 0 ' ° + 0 ( 0 1 2  ) and C =  1 0 m + O ( 0 ' 2 ) .  (22) 
162 

which show that when 0 is small, /3 and C are both positive, hence ©,,(t) is always 
positiw~. In fact, the numeric results show that c/5;.(t) is always positive even when 
0 7:/2. This means that the approximating curve is always outside the circular 
arc. 

The first two potential interior extreme points of O,.(t) are 

l /1 1 

t,-5-V5-/' ' '  ;-_, 

wherel,., = ( 1 / 1 0 ) ( 1 - 4 A + X / ( 1 - 4 A )  2 + 1 5 , ~ ) , t t 2 - ( 1 / 1 0 ) ( 1  4A \ ~  4A) 2 +15A) 
and A - B / C .  The Taylor expansions of [/1 and It2 at 0 = 0 give 

3 , 120-258-(]1 + O(02), I ' ,  = 1~O(0") and tz2 = + 

from which we can conclude that the maximum value of ~),.(t), given by Ct~(1 
4ttl )(tI, L + A), occurs at tl (and 1 - t L )  because iz2 will become negative when 0 is small. 
The Taylor expansion of (5,.(tl) at 0 = 0 is 

c~;,(l, ) - 16~8408 + O(01°), (23) 

which shows that the maximum radial error decreases with the eighth power of the 
circular arc's angular span. 

Method II 

This method chooses p and r so that C(t)  interpolates the position and the curvature of 
the arc's mid-point at t -- 1/2. Because C(~) will always match the tangent at the arc's 
mid-point at t - 1/2 due to the curve's symmetry, these two interpolation requirements 
make C ( t )  become G 2 continuous at I = 1/2. Therefore, from the theorem stated in 
Section 4, we have ~- (1 /2)  = 0 and q / / ( l /2)  = 0. 

From 0~,((1/2) = 0, we have 6 B -  6C - 5 D  - 0. Substituting (13b,c,d)into this 
equation and using (18) and (6), we obtain 

4 8 
p 4 + ~ s i n 2 O p 3 - - ~ ( 1 -  cos 0)(2cos3 0 + 2cos2 0 - 7 cos0 15)p 2 

32 
+ ~ s i n 0 ( 1 - c o s 0 ) ( 1 6 + c o s 0  - 7 c o s  20)P 

1 6  
+ 625(1 cos 0)2(49 cos2 0 - 4 6 c o s 0  - 31) 0 (24) 

and the four solutions are 
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4 2COs0)l/2 2 P3 = - 7 ( 2 -  - ~ s in0Icos  20 + 7 ÷ 4 ( 2  + 2cos0)  1/211/2 

2 
- - sin 0 cos 0, 

5 

P4 = - - .  (2 - 2cos0)  1/2 4- ~ sin 0 [cos  2 0 4- 7 + 4(2 + 2 cos0)1/21 i/2 

2 
- - sin 0 cos 0, 

5 

P s =  ( 2 - 2 c o s 0 ) ' / 2 - g s i n 0 [ c o s  2 0 + 7 - 4 ( 2 + 2 c o s 0 )  1/2] 1/2 

2 
- - s i n 0 c o s 0  and 

5 

2 
P6 ~ ( 2 _ 2 c o s O ) l / 2 + g s i n O [ c o s 2 0 + 7 _ 4 ( 2 + 2 c o s O ) J / 2 ] J / 2  2 - g sin 0 cos 0. 

We can immediately reject p3 and p6 because p3 is always negative and p6 does not 
always satisfy (20). 

Because of ~,  (1/2) = 0, we have 2/3 + 2C + D = 0, together with 6B - 6 C -  5D = 0 
obtained from ~5~((1/2) = 0, we obtain B / C  = - 1 / 4  a n d / 3 / D  = 1/6, therefore, the 
radial error becomes 

fS~.(~) = Bt3(1 - t)3(1 - 2t) 4. (25) 

The Taylor expansion of  B at 0 = 0 gives 

= - 1 ~ 0  j° + O(012), when p = P4, and (26a) B 

= - ~ 2 ( 1 2 3  - 55x/5)01° + O(012), when p = ps, (26b) B 

which show that using P5 can achieve a smaller radial error and the radial error resulted by 
either P4 or P5 is always negative when 0 is small. The radial error attains its maximum 
value 27/3/50000 at t = 1/2 ~: -~1-@10 and from (26a,b) the maximum radial error 
converges at the tenth power of  the arc's angular span. 

5.2. G 3 approximations 

When C(t)  is a G 3 approximation, p, q and r have to satisfy both (6) and (8), from 
which we can represent q and r as functions of  p only as 

5 p ( - 5  sin0p 2 - 6 cos0p + 4 sin 0) 
q = 4(5p + 2 sin 0 cos 0) and (27a) 

- 2 5  cos Op 3 4- 20 sin 0132 4- 8 sin 3 0 
r = (27b) 

4(5p + 2 sin 0 cos 0) 

Obviously the parameter best suited as the shape parameter is p. 
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Method III 

In this method, the shape parameter  p is determined by letting C ( 1 / 2 )  = (0. I). 
From (18) and (27b), we obtain a cubic equation for p as 

125 cos 0p 3 - 150 sin Op 2 + 20 ( cos :~ 0 - 9 cos O + 8)p 

-- 8 sin 0 (3 cos 2 0 - 8 c o s 0 + 5 )  = 0  (28) 

and the', three solutions are 

2 
pv = _~ sin 0, 

sin 0(3 - cos0)  - X/(1 - cos0)3(9 + cos0 )  
and 

P~; - 5 cos 0 

sin 0(3 - cos0)  + ~ cos0)3(9 + cos0)  

5 cos 0 

Again, p9 is rejected since it is greater than the upper bound of  p in (20). When 
0 ~ / 2  (a semi-circle), the cubic term of (28) vanishes and we obtain two sets ol  
(p, q, r) :  ( 2 / 5 , 4 / 5 , 7 / 5 )  by using P7 and (2/3~ 4/9 ,  19/15) by using Ps. The approxima- 
tion curve obtained using p = P7 is actually the same as the degree 5 Hermite interpolant 
described in (Floater, 1997) when the conic section is a circular arc. As mentioned pre- 
viously, there are two more quintic curves that satisfy the same geometric conditions. 

Because C ( t )  is a G 3 approximation curve and C ( 1 / 2 )  = (0, 1), we have B 0 and 
2B + 2C - D 0, thus 2C + D = 0. The radial error in (15) is simplified to 

<.,,.(t) Ct4 ( l  - t)4(1 - 2t) e (29) 

with maximum value C/3125  occurred at t - 1/2 T x/55/10. Substituting (27a,b) into 
(13c) and using p = (2 /5)  sinO, the constant (r in (29) turns out to be in a concise form 
as 

16(1 cosO) 5 
(7 - (30) 

1 + cos 0 

Eqs. (29) and (30) clearly show that the radial error, resulted by pv, is always positive. 
The Taylor expansion of C at 0 = 0 gives 

( ~ =  -10t° + 0 ( 0 ' 2 ) ,  w h e n p = ] , 7 ,  and (31al 
4 

~(123- 55(g)0'° + 0(0'2). when p = t,s. (31bj ('7 

which show that using ps can achieve a much smaller radial error and the maximum 
radial error resulted by either P7 or pg has a convergence rate of 10. 
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Method IV 

This method determines p by letting c~2 = 0. Substituting (17a,b), obtained from setting 
~2 = 0, to (8), the compatibil i ty equation for G 3 continuity, we obtain 

5(2 - cos 20)p 2 + 4 sin 20p + 2(cos 20 - 1) = 0 (32) 

and the two solutions are 

- 2  sin 20 - 2 sin 0x/10 - cos 2 0 
and 

PJ0 = 5 ( 2 -  cos 20) 

- 2  sin 20 + 2 sin 0x/10 - cos 2 0 

Pll  = 5 ( 2 -  cos 20) 

Obviously, P J0 should be rejected because it is always negative. 
Performing the Taylor expansions of  C and D at 0 --- 0 using pl l  gives 

and 

which show that when 0 is small, C and D are both negative, hence the radial error, 
described by (15), is always negative. The numeric results also show that ~ . ( t )  is always 
negative even when 0 = 7r/2. This means that the approximating curve is always inside 
the circular arc. From (33), we can also conclude that the radial error has only one 
interior extreme point located at t = 1/2 since • approaches 2 when 0 approaches zero. 
The Taylor expansions of  ~ r ( l / 2 )  at 0 = 0 gives 

- 1 6 0 8  + O(012) (34) 4,.(1/2)= 27 

which shows that the maximum radial error decays at a rate of 8. 

5.3. G 4 approximations: Method V 

When C(t)  is a G 4 approximation, p, q and r have to satisfy (6), (8) and (9). Substi- 
tuting (27a, b), obtained from (6) and (8), into (9), we obtain a polynomial  of  degree six 
for p as 

3125 6 625 5 
4 p - - 2 -  s in20p + 125(4cos 4 0 - 19cos 2 0 + 3)p 4 

+ 100 sin 20(9 - 5 cos 20)p 3 + 20 sin 2 0(49 cos 2 0 - 25)p 2 

+ 16 sin 3 0 cos 0(cos z 0 - 25)p - 16 sin 4 0(cos z 0 - 5) = 0. (35) 

The solution can be found within just a few iterations using the Newton-Raphson method 
with p7 or P8 as the initial guess. The value of q and r can be found from (26a,b) sub- 
sequently. Note that using p7 and P8 as initial guess will result in different solutions 
for (35) and the numeric results show that the solution obtained using p8 will achieve 
better approximation accuracy. The radial error function is described by (16) with max- 
imum value occurred at t = 1/2. Because the solution of  (35) is numerically computed, 
the radial error 's  convergence rate cannot be analytically determined; hence, it will be 
numerically estimated as shown in Section 6. 
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5.4. S o m e  notes  

There are some issues related to the approximation methods described above that are 
worth some more explanations. The first one is about setting (t2 to zero in method I and 
IV. Besides being the simplest choice that actually results in simple quadratic equations 
as shown previously, using ~t2 = 0 also makes the first two derivatives of C ( l )  at its 
ends become orthogonal, a property of a true circular arc. It is a reasonable approach 
to mimic the property of  the target curve we want to approximate.  Furthermore, using 
(~ = 0 allows the resulting quintic curves to become C ~- joinable.  This is because the 
reparametrization involved in the joining process is affine parameter transformation only. 
When constructing surfaces from curves involving circular arcs of large angular spans. 
we can approximate the circular arc by a single C 2 quintic B-spline curve with as many 
segments as the accuracy needs, thus eliminating the creases on the surface that ~i l l  
otherwise be generated. 

The second issue is about the mid-point-interpolating scheme adopted by method 
[, II and ll l ,  which always produce one-sided approximation curves with zero radial 
error at t -- 1/2. This immediately suggests that it is possible to make the radial error 
become equioscillating while still satisfying the same boundary conditions. Although 
this approach will reduce the maximum radial error and produce a more uniform error 
distribution, experiences show that the typical radial error reduction does not exceed 30(~ 
and is always in company with the increase of the curvature error and the computation cost 
as well. Therefore, this approach is not recommended unless uniform error distribution 
is essential to the application. In this paper, this approach is only applied on method I 
to show how the radial error and other error measurements would differ from its mid- 
point-interpolating counterpart. The numeric results are shown in Table 1 to 3 and Fig. 3 
under the name method l-a. 

It is obvious that the above-described methods still have not produced the optimal 
solution within the class of G 2 quintic approximation curves. Approximation accuracy 
can be further reduced by letting all the live interior extreme points (ref. Section 4) have 
the same magnitude or even loosening the (,'2 continuity requirement. However, doing 
so will rely on solving a nonlinear equation set of two or more variables to obtain the 
approximation curve, therefore, they are not discussed in details here. 

6. Approximation assessment 

Circular arc approximation methods can be assessed by the yielding approximation 
accuracy, its convergence rate and the computation cost. To evaluate the approximation 
accuracy, some sorts of  error measurements need to be established first. Although radial 
error is the most commonly used error measurement,  using radial error alone is often 
insufficient. Therefore, two more auxiliary error measurements are used to help evaluating 
the approximation accuracy: 

• ~;,:(t) ]]h'(~)[] - 1, measuring the error in curvature, and 
• e , , ( l )  = dll ~ ( t ) I I / d s ,  measuring the error in curvature's variation with respect to arc 

length, which should be zero everywhere for a true arc. 
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Table 1 
The Ic,.] ...... for circular arcs of angular span (_r) (in degree) 

857 

180 150 120 

1 9.1089e-04 2.2455e-04 (7.68) 3.9708e-O5 (7.76) 

l-a 6.7588e-04 1.6556e-04 (7.72) 2.9126e- 05 ( 7.75 ) 

ll-p5 1.2229e 05 1.9889e-06 (9.96) 2.1490e-07 (9.97) 

I I I -1 )7  2.5567e-03 4.5478e-04 (9.58) 5.3319e ~05 (9.61) 

l II-t),s 3, 1604e-05 5.0098e-06 ( 10.1 ) 5.2981e-07 110.(17 

IV 1.1788e-02 2.6205e-03 18.25 ) 4.2759e--04 (8.12) 

V 4.1895e~)2 6.4863e-05 (10.23) 6.7212e-06 (10.16) 

(-) 90 60 30 

1 4.1550e-06 (7.85) 1.6764e-07 (7.93) 6.6867e 10 (7.98) 

l-a 3.0354e-06 (7.86) 1.2212e-07 (7.92) 4.862%-10 (7.97) 

[l-p5 1.2166e-08 (9.98) 2.1180e-10 (9.99) 2.0739e-13 ( 10.0~ 

111-pv 3.2324e-06 (9.74) 5.9215e-08 (9.86) 5.9813e- 1 I ( 9.95 I 

Ill-ps 2.9486e-08 (10.0) 5.0707e-10 (10.0) 4.9272e 13 (10.0) 

IV 4.2196e-05 (8.05) 1.6370eq)6 (8.01) 6.3858e 09 (8.0) 

V 3.6795e4)7 (10.10) 6.2514e-09 (10.05) 6.0291e--12 (10.02) 

Figs. 3 to 7 show the distribution of c,.(~), c~(l) and z ,U)  resulted by the various 
methods described in Section 5 using a semi-circle as example.  For method II, I l l  and 
V in which multiple feasible solutions exist, we only display the result for the one 
that achieves smaller radial error because the error distributions for the other solution 
are similar. Because all methods will produce approximation curves with at least G 2 
continuity, e,.(t) and ok(t) are always zero at ~ = 0 and t = 1. For methods that 
produce G 3 approximating curves, their c,,(~) graphs (see Figs. 5 and 6) are zero at 

- 0 and t = 1. Error distributions in Figs. 6 and 7 are very much alike; however, the 
graphs in Fig. 7 are smoother at the boundaries. The maximum values of  these three 
error measurements for different values of (-) are listed in Tables 1, 2 and 3 respec- 
tively. 

We had proven that all the approximation methods, except method V, will yield an 
approximation with either order 8 or 10 of  convergence rate for the radial error; however, 
trying to perform the similar analytic analysis for ca,(t) and ~,,(l) is far more difficult. 
Therefore, the convergence rate of the radial errors lk)r method V and that of ~ : ( l )  and 
#~,(t) are computed numerically by 

Ill ~-log2 (]C(O2)lmax)/log2 (0~1) l e (0 , ) lm,~x  " 1 3 6 i  
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Table 2 
The lekl ..... for circular arcs of angular span O (in degree) 

O 180 150 120 

I 7.4544e-03 2.6106e4)3 (5.76) 7.4076e-04 (5.65) 

I-a 8.6761e-03 3.0701e~03 (5.70) 8.4594e-04 (5.78) 

II-p5 1.8315e-04 4.3958e~)5 (7.83) 7.5742e-06 (7.88) 

IlI-p7 2.1118e-02 5.5918e~)3 (7.29) 1.0869e-03 (7.34) 

IlI-p8 3.3058e-04 7.4256e4)5 (8.19) 1.2103e-05 (8.13) 

IV 2.8548e-02 1.0098e-02 (5.70) 2.7708e-03 (5.80) 

V 1.3734e-03 3.2865e~)4 (7.84) 5.6148e-05 (7.92) 

O 90 60 30 

I 1.4066e-04 (5.78) 1.2956e-05 (5.90) 2.0853e-07 (5.97) 

I-a 1.5712e~04 (5.85) 1.4258e~05 (5.92) 2.2752e-07 (5.97) 

II-ps 7.7480e~)7 (7.93) 3.0710e-08 (7.96) 1.2118e-10 (7.99) 

IIl-p7 1.2287e-04 (7.58) 5.2460e~)6 (7.78) 2.165%-08 (7.92) 

IIl-ps 1.1843e~)6 (8.08) 4.5856e-08 (8.02) 1.7939e-10 (8.00) 

1V 5.1268e~)4 (5.86) 4.6418e-05 (5.92) 7.4006e-07 (5.97) 

V 5.6848e-06 (7.96) 2.2328e-07 (7.98) 8.7510e-10 (8.00) 

Listed in the parentheses of  Tables 1, 2 and 3, the convergence rate for any particular 
angular span is computed against the immediate neighbor on its left. For radial errors, 
the numeric results show that the convergence rate for method V is also 10 and the nu- 
merically computed convergence rates for the other methods also agree with the analytic 
results shown in Section 5. It is also noteworthy that the methods (method I, I-a and 
IV) producing quintic curves that are C 2 joinable have convergence rates of  8 while the 
other methods have convergence rates of  10. For the errors in curvature and curvature's 
variation, the convergence rates are two and three orders less than that for radial errors 
respectively. 

Table 4 is a summary as well as a comparison for some published methods and 
the proposed methods. The approximating curve's degree, the achieved continuity at 
the curve's boundaries, the maximum radial error for a unit semi-circle, and the ra- 
dial error's convergence rate are listed for each method. This table clearly shows that 
using quintic polynomial to approximate circular arcs can achieve higher order con- 
tinuity, improved approximation accuracy and higher convergence rate at the same 
time. Note that although method IlI-p7 has a larger radial error than that of  method 
l for the semi-circle case, its accuracy improves faster than method I does as the ar- 
c's angular span decreases. In fact, as shown in Table 1, method lll-pv will produce 
smaller radial error when the angular span is 90 degree and smaller. Among the meth- 
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Table 3 
The le, I ...... for circular arcs of angular span &) (in degree) 

859 

0 180 150 120 

1 8.7891e-02 4.0094e-02 (4.31) 1.4567e-02 (4.54) 

l-a 8.2994e-02 3.7584e-02 (4.34) 1.3577e-02 (4.56) 

11-t)5 3.6501e-03 1.0853e-03 (6.65) 2.3978e~)4 (6.77) 

llI-pv 1.9271e-01 4.8726e-02 (7.54) 9.4334e-03 (7.36) 

llI-p~ 1.4461e-03 3.9327e-04 (7.14) 8.0721e-05 (7.10) 

IV 9.022%-02 3.5192e-02 (5.16) 1,1397e-02 (5.05) 

V 4.5520e-03 1.2327e-03 (7.17) 2.5181e-04 (7.12) 

0 90 60 30 

1 3.7450e~03 (4.72) 5.2217e-04 (4.89) 1.6887e-05 (4.97} 

l-a 3.4757e-03 (4.74) 4.8322e 04 (4.87) 1.5601c-05 (4.95) 

II-ps 3.3335e-05 (6.86) 2.0086e-06 (6.94) 1.5969e 08 (6.98) 

[ll-p~ 1.2025e-03 (7,16) 7.4278e-05 (6.87) 5.9844e-07 (6.96) 

llLps 1.0751e-05 (7.01) 6.2906e-07 (7.00) 4.9145e-09 (7.00) 

IV 2.7022e-03 (5.00) 3.5746e-04 (4.99) 1.1228e-05 (4.99) 

V 3.289%-05 (7.07) 1.8951e-06 (7.04) 1.4661e-08 (7.01) 

ods presented in this paper, method I and ll l  are the most-recommended ones because 
they yield accurate approximations with appropriate continuities and the approxima- 
tion curve can be easily computed by those simple formulas described in Sections 5.1 
and 5.2. 

7. Conclusion 

A collection of circular arc approximation methods using quintic polynomial  curves 
has been presented. The approximation accuracy and the convergence rate have also 
been analyzed. Although the approximations are not optimal, the resulted high accuracy, 
high convergence rate, and the simplicity in the computation method will certainly make 
them attractive for practical applications. It should also be noted that all the presented 
methods are developed based on the "error-in-radius" criterion. However, approximation 
methods based on other criteria such as maintaining the arc's convexity or uniform 
parametrization or minimizing the error in the arc's sector area or arc length might 
also be needed for special applications, and should be worth more investigations in the 
future. 
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