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G3 approximation of conic sections by quintic polynomial curves
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Abstract

This paper presents a method for approximating conic sections using quintic polynomial curves.
The constructed quintic polynomial curve has G3-continuity with the conic section at the end points
and G1-continuity at the parametric mid-point. It is found that for any conic section, there exist
three quintic polynomial curves satisfying the mentioned geometric continuity. One of them is the
geometric Hermite interpolant proposed in (Floater, 1997) and one of the others is shown to have
much smaller error and better shape-preserving property. 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

It was described in a recent paper (Floater, 1997), how one can approximate a conic
section, in the form of a rational quadratic Bézier curve, by a geometric Hermite interpolant
of any odd degreen. The interpolant has a total number of 2n contacts with the
conic section:n − 1 at the end points and 2 at the parametric mid-point. Thus, for a
quintic polynomial interpolant(n = 5), it is G3-continuous with the conic section at the
end points and G1-continuous at the parametric mid-point. Also, in a recent study on
circular arc approximation using quintic polynomial curves, it was pointed out that there
are three quintic polynomial curves meeting the above-mentioned geometric continuity
requirements for circular arcs and Floater’s quintic Hermite interpolant is just one of them
(Fang, 1998). In this paper we will further prove that in fact this statement is true not only
for circular arcs but also for any conic section curves (except parabolas). We will also show
that one of these quintic polynomial curves has smaller approximation error and possesses
better shape-preserving quality comparing to Floater’s quintic Hermite interpolant.
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Fig. 1. The conic sectionr(t) in the casesw < 1, w = 1 andw > 1.

The problem of interest is stated as follows. Given a conic section represented in the
form of a rational quadratic Bézier curve as

r (t)= B0(t)p0+B1(t)wp1+B2(t)p2

B0(t)+B1(t)w+B2(t)
, t ∈ [0,1], (1)

wherep0,p1,p2 ∈ R2 are the control points,w ∈ R is the weight associated withp1,
assumed positive,B0(t) = (1 − t)2, B1(t) = 2t (1− t), B2(t) = t2 are the Bernstein
basis functions, we want to find an approximating quintic polynomial curve that is G3-
continuous with the conic section at the end points and G1-continuous at the parametric
mid-point. Here the standard form ofr (t) is used without losing any generality. It is also
well known thatr (t) is an ellipse whenw < 1, a parabola whenw = 1 and a hyperbola
whenw > 1 (see (Farin, 1993)). Fig. 1 shows these three different possibilities.

The rest of this paper is organized as follows. In Section 2 we prove that there exist
three quintic polynomial curves satisfying the above-mentioned geometric continuity
requirements. Section 3 addresses the approximation quality of the resulted quintic curves.
Approximation of circular arcs is given as an example in Section 4 and some concluding
remarks are given in Section 5.

2. Conic section approximation

A quintic polynomial curve, when represented in Hermite form, can be written as

Q(t)= (x(t), y(t))= [H1(t) H2(t) H3(t) H4(t) H5(t) H6(t)
]


Q(0)
Q′(0)
Q′′(0)
Q(1)
Q′(1)
Q′′(1)


,

t ∈ [0,1], (2)
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whereQ(0), Q′(0), Q′′(0), Q(1), Q′(1) andQ′′(1) are the position, the first derivative
and the second derivative ofQ(t) at t = 0 and t = 1, respectively, andHi(t), i =
1, . . . ,6, are the quintic Hermite polynomial functions, which are listed below without
any derivations.

H1(t)= 1− 10t3+ 15t4− 6t5,

H2(t)= t − 6t3+ 8t4− 3t5,

H3(t)= 1
2t

2− 3
2t

3+ 3
2t

4− 1
2t

5,

H4(t)= 10t3− 15t4+ 6t5,

H5(t)=−4t3+ 7t4− 3t5,

H6(t)= 1
2t

3− t4+ 1
2t

5.

Interested readers are pointed to (Hosaka, 1969) and (Hoschek, 1993) for more details
about Hermite polynomials.

It is well known that a quintic Hermite curve described by (2) can be G2-continuous to
r (t) at end points by setting

Q(0)= r (0), Q′(0)= α0r ′(0), Q′′(0)= α2
0r ′′(0)+ β0r ′(0),

Q(1)= r (1), Q′(1)= α1r ′(1), Q′′(1)= α2
1r ′′(1)+ β1r ′(1),

(3)

whereα0, β0, α1 andβ1 are arbitrary constants and the differential properties ofr (t) at
t = 0 andt = 1 are computed as

r (0)= p0, r (1)= p2,

r ′(0)= 2w(p1− p0), r ′(1)= 2w(p2− p1),

r ′′(0)= (4w− 8w2)(p1− p0) r ′′(1)= (− 4w+ 8w2)(p2− p1)

+ 2(p2− p0), − 2(p2− p0).

2.1. The G3-continuity att = 0 andt = 1

To achieve G3-continuity at the end points, the third derivatives ofQ(t) at t = 0 and
t = 1 need to satisfy

Q′′′(0)= α3
0r ′′′(0)+ 3α0β0r ′′(0)+ γ0r ′(0), (4a)

Q′′′(1)= α3
1r ′′′(1)+ 3α1β1r ′′(1)+ γ1r ′(1), (4b)

where

r ′′′(0)=−12(1−w)(4w2(p1− p0)− (p2− p0)
)
,

r ′′′(1)=−12(1−w)(4w2(p2− p1)− (p2− p0)
)
,

andγ0 andγ1 are arbitrary constants.
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SubstitutingQ′′′(0) obtained from (2) and (3) into (4a), taking cross product withr ′(0)
on both sides of (4a) to eliminate theγ0 term, and using the fact that

(p2− p0)× (p1− p0), (p2− p1)× (p1− p0) and (p2− p1)× (p2− p0)

all equal two times the area of the triangle1p0p1p2, (4a) becomes

−α0β0+wβ1+
[
10− 3α2

0 − 2(1−w)α3
0 − 8wα1−

(
1+ 2w− 4w2)α2

1

]= 0. (5a)

Applying similar procedure on (4b) results in

wβ0− α1β1−
[
10− 3α2

1 − 2(1−w)α3
1 − 8wα0−

(
1+ 2w− 4w2)α2

0

]= 0. (5b)

From (5a) and (5b), it is clear that by selecting one set ofα0 andα1, there exist a unique
solution forβ0 andβ1 satisfying (5a) and (5b) providedα0α1−w2 is not zero. This means
that there are infinite quintic polynomials that are G3-continuous withr (t) at end points.

2.2. The G1-continuity att = 1/2

To achieve G1-continuity at the parametric mid-point, we requireQ(1/2)= r (1/2) and
Q′(1/2)× r ′(1/2) = 0. Because any point(x, y) ∈ R2 can be written uniquely in terms
of barycentric coordinates with respect to a triangle, the position continuity att = 1/2
immediately suggests that the barycentric coordinates ofQ(1/2) andr (1/2) should be the
same. Therefore, we have

L0= L0, L1= L1 and L2= L2,

whereLi andLi (i = 0,1,2) are the barycentric coordinates ofQ(1/2) andr (1/2) with
respect to the triangle1p0p1p2, i.e.,

Q(1/2)= L0p0+L1p1+L2p2

and

r (1/2)= L0p0+L1p1+L2p2.

Direct computation ofQ(1/2) andr (1/2) gives

L0= 1
2 − 5

16wα0− 1
16

(
w− 2w2)α0− 1

32wβ0− 1
32

(
α2

0 − α2
1

)
,

L1= 5
16w(α0+ α1)+ 1

16

(
w− 2w2)(α2

0 + α2
1

)+ 1
32w(β0− β1),

L2= 1
2 − 5

16wα1− 1
16

(
w− 2w2)α2

1 + 1
32wβ1+ 1

32

(
α2

0 − α2
1

)
,

L0= L2= 1
2(1+w) and L1= w

1+w .

SubstitutingLi andLi (i = 0,1,2) to L0 − L2 = L0 − L2 = 0 (sinceL0 = L2) and
L1= L1 yields

5
16w(α0− α1)+ 1

16

(
1+w− 2w2)(α2

0 − α2
1

)+ 1
32w(β0+ β1)= 0, (6a)

5
16w(α0+ α1)+ 1

16

(
w− 2w2)(α2

0 + α2
1

)+ 1
32w(β0− β1)= w

1+w . (6b)

Furthermore, the tangency continuity att = 1/2 results in
7
16(α0− α1)+ 1

16(1− 2w)
(
α2

0 − α2
1

)+ 1
32(β0+ β1)= 0. (7)
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Subtracting(7)×w from (6a) gives

1
16(α0− α1)(α0+ α1− 2w)= 0 (8)

which shows that for the quintic polynomialQ(t) to be G1-continuous withr (t) at
t = 1/2, α0 andα1 need to satisfy eitherα0− α1= 0, α0+ α1− 2w = 0, or both.

So far, we have shown that (5a) and (5b) need to be met forQ(t) to be G3-continuous
with r (t) at end points and that (6b) and (8) need to be met forQ(t) to be G1-continuous
with r (t) at t = 1/2. In the following we will show that there exist only three solutions
satisfying all of the four equations.

Assumingα0 − α1 = 0, thusβ0 + β1 = 0, we letα0 = α1 = α andβ0 = −β1 = β to
simplify notation, then (4a) and (4b) become identical as

(−2+ 2w)α3+ (4w2− 2w− 4
)
α2− (8w+ β)α −wβ + 10= 0, (9)

and (6b) becomes

5

8
wα + 1

8

(
w− 2w2)α2+ 1

16
wβ = w

1+w, or

β = 16

1+w − 10α− 2(1− 2w)α2. (10)

Substituting (10) into (9) yields

−2wα3+ 6α2+ 2(w2+w− 8)

1+w α − 2(3w− 5)

1+w
=−2(α− 1)

[
wα2+ (w− 3)α + 5− 3w

1+w
]
= 0, (11)

for which the solutions forα can be easily found as

1, α1= 1

2w

(
(3−w)− (1−w)

√
w+ 9

w+ 1

)
and

α2= 1

2w

(
(3−w)+ (1−w)

√
w+ 9

w+ 1

)
. (12)

Distributions of these three solutions as functions ofw are shown in Fig. 2. It should be
noted that whenw= 1, (11) has triple roots atα = 1.

If α0+ α1− 2w= 0, thusβ0+ β1= (8w2− 4w− 14)(α0− α1), we have

α1= 2w− α0 (13a)

and

β1= 2(8w2− 4w− 14)(α0−w)− β0. (13b)

Substituting them into (6b) yields

β0= (4w− 2)α2
0 − 14α0+ 4(w2+w+ 4)

1+w , (14)

and (4a) and (4b) become
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Fig. 2. The graphs ofα as functions ofw.

−2wα3
0 + 10α2

0 −
2

1+w
(
3w2+ 3w+ 8

)
α0

+ 2

1+w
(
2w3+ 2w2− 3w+ 5

)= 0, (15a)

−2wα3
0 +

(
12w2− 10

)
α2

0 −
2

1+w
(
12w4+ 12w3− 17w2− 17w+ 8

)
α0

+ 2

1+w
(
8w5+ 8w4− 16w3− 16w2+ 19w− 5

)= 0. (15b)

These two equations are found to have common solutionα0 = 1 only whenw = 1.
However, this solution is included in the solutions found previously.

With the above derivation, we can conclude that for any given conic section represented
by (1), as long asw 6= 1, there exist three quintic polynomials that are G3-continuous
with the conic section at the end points and G1-continuous at the parametric mid-point.
Therefore, from (2) and lettingα0= α1= α andβ0=−β1= β , the approximating quintic
curveQ(t) can be rewritten as

Q(t)=K0(t)p0+K1(t)p1+K2(t)p2, (16)

where

K0(t)=H1(t)− 2wαH2(t)+
[−(2+ 4w− 8w2)α2− 2wβ

]
H3(t)+ 2α2H6(t),

K1(t)= 2wα(H2(t)−H5(t))+
[(

4w− 8w2)α2+ 2wβ
]
(H3(t)+H6(t)),

K2(t)=H4(t)+ 2wαH5(t)+
[−(2+ 4w− 8w2)α2− 2wβ

]
H6(t)+ 2α2H3(t),

whereα equals 1, α1, or α2 andβ is obtained from (10). Note thatK0(t) + K1(t) +
K2(t)= 1 reflects that they are indeed the barycentric coordinates ofQ(t) with respect to
the triangle1p0p1p2. For convenience, we denote the three quintic approximation curves
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obtained by usingα = 1, α1, andα2 asQ0(t), Q1(t) andQ2(t), respectively. In the next
section, we will evaluate the quality of these three quintic approximation curves.

3. Approximation accuracy

3.1. Approximation error

It is well known that for any point on the conic sectionr (t), its barycentric coordinates
τ0, τ1, τ2, whereτ0+ τ1+ τ2= 1, with respect to the triangle1p0p1p2, satisfies

f
(
r (t)

)= τ2
1 (t)− 4w2τ0(t)τ2(t)= 0. (17)

Consequently, for any curvec(t) approximating the conic sectionr (t), we can usef (c(t))

to see how well the approximation is. The functionf (Q(t))=K2
1(t)− 4w2K0(t)K2(t) is

computed as

f
(
Qi (t)

)=Ait4(1− t)4(2t − 1)2, i = 0,1,2, (18)

where

A0= 16w2(w− 1)4

(w+ 1)2
, A1= 2(w− 1)4δ−(w)

w2(w+ 1)
, A2= 2(w− 1)4δ+(w)

w2(w+ 1)
and

δ∓(w)= (w+ 1)(2w+ 9)(2w+ 3)

(
1∓

√
w+ 9

w+ 1

)
+ 2(w+ 3)(8w+ 9).

It can be shown that 06A16A06A2 and the equality happens whenw= 1.
Combining (12), (16) and (18), we can deduce the following remarks.

Remark 1. All the three approximation curves are always “outside” the conic section, i.e.,
Qi (t) (i = 0,1,2) always lies on the side containingp1. This is a direct result from the fact
thatf (Qi (t)) is always nonnegative.

Remark 2. Q0(t), the approximation curve obtained by usingα = 1, is the same as the
quintic Hermite interpolant proposed in (Floater, 1997). This can be easily verified by
comparingQ0(t) against the result in (Floater, 1997) withn= 5.

Remark 3. Q2(t), the approximation curve obtained by usingα = α2, is generally
unacceptable becauseα2 becomes negative whenw is greater than 5/3 and approaches
infinity whenw approaches zero.

Remark 4. As shown in Fig. 3, the ratioλ = f (Q1(t))/f (Q0(t)) = A1/A0 decreases
exponentially asw increases. The Taylor expansion ofλ at w = 0 also shows thatλ
approaches 1/81 whenw approaches zero.
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Fig. 3. The graph of the error ratioλ as a function ofw.

Remark 5. Q1(t), the approximation curve obtained by usingα = α1, is completely
enclosed byQ0(t) andr (t) and these three curves intersect only att = 0, 1/2 and 1.

Remark 6. For 0<w 6 3,

dH (Q1, r )6
4

3125

max(1,w2)(w− 1)4λ

(1+w)2
∣∣p0− 2p1+ p2

∣∣, (19)

wheredH (Q1, r ) is the Hausdorff distance betweenQ1(t) andr (t) andλ=A1/A0.

To prove this theorem, we will use several lemmas proven in (Floater, 1997). First,
from Lemmas 3.3a and 3.3b of (Floater, 1997), we know thatQ0(t) lies entirely inside
the triangle1p0p1p2 for 0< w 6 3. SinceQ1(t) is always enclosed byQ0(t) and r (t)
(from Remark 5),Q1(t) will also lie entirely inside the triangle1p0p1p2 for 0< w 6 3.
Therefore, from Lemma 3.2 of (Floater, 1997), we obtain

dH (Q1, r )6
1

4
max

(
1

w2 ,1

)
max
t∈[0,1]

∣∣f (Q1(t))
∣∣∣∣p0− 2p1+ p2

∣∣ for 0<w 6 3.(20)

Furthermore, from Lemma 3.4 of (Floater, 1997), we have

f
(
Q0(t)

)
6 16

3125

w2(w− 1)4

(1+w)2 for all t ∈ [0,1]. (21)

Combining (20), (21) andf (Q1(t))= λf (Q0(t)), we obtain (19) as claimed.
It should be noted that (19) is valid not only when 0< w 6 3, it remains true as

long asQ1(t) is entirely inside the triangle1p0p1p2. Given the facts thatQ0(t) starts to
migrate outside the triangle whenw > 3 andf (Q1(t)) is much smaller thanf (Q0(t)), it is
reasonable to assume thatQ1(t) will remain inside the triangle1p0p1p2 evenw is greater
than 3 (but smaller than a certain value). Therefore, (19) should be valid for 0< w 6 w0
wherew0> 3.
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3.2. Shape preservation

The approximation quality is also evaluated by checking whetherQ(t) preserve the
shape ofr (t). An important property ofr (t) is thatr (1/2) is the only point at which the
tangent ofr (t) is parallel to linep0p2. Similarly, whenQ(1/2) is the only point at which
the tangent ofQ(t) is parallel to linep0p2, we say thatQ(t) preserves the basic shape of
r (t). This criterion can be written mathematically as follows.

Criterion 1. The equation

dQ(t)
dt
× (p2− p0)= 0 (22)

has only one solution att = 1/2 for t ∈ [0,1].

Direct computation of (22) gives

2w

[(
16α− 32

1+w
)
t3−

(
24α− 48

1+w
)
t2

+
(

10α− 16

1+w
)
t − α

]
(p2− p1)× (p2− p0)

= 16w(2t − 1)

[(
α − 2

1+w
)
t2

−
(
α − 2

1+w
)
t + α

8

]
(p2− p1)× (p2− p0)= 0.

(23)

Sincew and(p2− p1)× (p2− p0) are not zero, satisfaction of Criterion 1 will require the
quadratic equation(

α − 2

1+w
)
t2−

(
α − 2

1+w
)
t + α

8
(24)

to have either no real roots (two complex roots), two real roots both of which are outside
[0,1], or double roots att = 1/2.

As a result, we find that as long as 0< (w + 1)α 6 4, (22) has only one solution at
t = 1/2. Therefore,Q0(t), obtained by usingα = 1, will preserve the basic shape ofr (t)
only when 0< w 6 3. Whenα = 1 andw > 3, (22) will have three real roots that are
inside[0,1], which implies that there exist three locations onQ0(t) where the tangent is
parallel top0p2. In such cases,Q0(t) will exhibit anomalies such as “camel humps” and
even loops as shown in Fig. 4.

Whenα = α1, it can be easily shown that(w + 1)α1 is always smaller than 4, which
means thatQ1(t) will always preserve the basic shape ofr (t). This good shape-preserving
property can be seen in Fig. 5 which shows a close-up ofr (t) (with w = 100) and
Q1(t) aroundt = 1/2. In fact, whenw approaches infinity andr (t) becomes two straight
lines defined byp0, p1 and p2, α1 is the only solution that will result in a converged
approximation curve, whose control pointsBi (i = 0, . . . ,5) are given by

B0= p0, B1= p1+ 1
5(p1− p0), B2= B3= p1,

B4= p1− 1
5(p2− p1), B5= p2.
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Fig. 4. The anomalies ofQ0(t) (in thin lines) whenw > 3: (a) “camel humps” and (b) loops.

Fig. 5. A close-up ofr(t) (w= 100, in thick line) andQ1(t) (in thin line) aroundt = 1/2.

Besides preserving the basic shape ofr (t), Q1(t) also enjoys better quality in terms
of the curvature distribution. For example, Fig. 6 shows that whileQ1(t) successfully
preserve the curvature characteristics ofr (t) (with w = 2.7) which has a single peak in its
curvature distribution,Q0(t) fails because it has two peaks and one valley in its curvature
distribution. The numeric results also show thatQ1(t) will maintain the convexity (free of
inflection points) untilw is approximately 23 whileQ0(t) is free of inflection points only
whenw < 3.

4. Example: circular arcs

When ‖p0p1‖ = ‖p1p2‖ and w = cosθ where θ is the angle6 p1p0p2, the conic
section described by (1) becomes a circular arc of angular span 2θ . For a unit circular
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Fig. 6. A sample curvature graph forr(t) (w = 2.7) and its approximation curvesQ0(t) andQ1(t).

arc with arc’s center located at the origin,f (Q(t)) can be related to the radial error
φ(t)= x2(t)+ y2(t)− 1 by

f
(
Q(t)

)= cos2 θ

sin2 θ

(
x2(t)+ y2(t)− 1

)= cos2 θ

sin2 θ
φ(t). (25)

Thus, the two quintic curves, obtained by usingα = 1 andα = α1, approximating the
unit circular arc would have radial errors as

φ0(t)= 16(1− cosθ)5

1+ cosθ
t4(1− t)4(2t − 1)2 whenα = 1 and (26a)

φ1(t)= 2(1− cosθ)5δ−
cos4 θ

t4(1− t)4(2t − 1)2 whenα = α1. (26b)

In (Fang, 1998), these two quintic curves, represented in Bézier form, and their radial
errors were also derived. However,φ1(t) was not expressed as an explicit equation. This
is because the circular arc was represented by trigonometric functions instead of rational
polynomials, which makes it difficult to simplifyφ1(t) into a concise form.

5. Conclusion

Unlike in (Floater, 1997) in which the geometric Hermite interpolant is given for any
odd degreen, we only focus on quintic polynomials in this paper. We proved that for
any conic section (except parabolas) described by (1) there exist three quintic polynomial
curves that are G3-continuous with the conic section at end points and G1-continuous
at the parametric mid-point. Among these three quintic curves, one is the same as the
quintic interpolant presented in (Floater, 1997) and one of the other two new curves is
proven to have much smaller approximation error and better shape-preserving property.
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This new quintic approximation curve can be used to construct a spline approximation of
r (t) with C1 and G4-continuity by recursively subdividingr (t) using the scheme discussed
in (Floater, 1995), and creating a new approximation curve for each subcurve. It can also be
used in approximating rational tensor-product biquadratic Bézier surfaces such as spheres
and torus.

Based on the ideas presented above, it may be possible to find polynomials of odd
degreen, other than Floater’s Hermite interpolants, that are Gn−2-continuous with the
conic section at end points and G1-continuous at the parametric mid-point. (In fact, we can
easily verify that there exist one unique solution whenn= 3.) However, the computation
involved for higher degree polynomials (n > 7) will be much more complicated and the
result might need to be derived numerically.
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