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Abstract

This paper presents a method for approximating conic sections using quintic polynomial curves.
The constructed quintic polynomial curve ha®-Gntinuity with the conic section at the end points
and G-continuity at the parametric mid-point. It is found that for any conic section, there exist
three quintic polynomial curves satisfying the mentioned geometric continuity. One of them is the
geometric Hermite interpolant proposed in (Floater, 1997) and one of the others is shown to have
much smaller error and better shape-preserving property99 Elsevier Science B.V. All rights
reserved.
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1. Introduction

It was described in a recent paper (Floater, 1997), how one can approximate a conic
section, in the form of a rational quadratic Bézier curve, by a geometric Hermite interpolant
of any odd degree:. The interpolant has a total number ofi Zontacts with the
conic section:n — 1 at the end points and 2 at the parametric mid-point. Thus, for a
quintic polynomial interpolantz = 5), it is G3-continuous with the conic section at the
end points and &continuous at the parametric mid-point. Also, in a recent study on
circular arc approximation using quintic polynomial curves, it was pointed out that there
are three quintic polynomial curves meeting the above-mentioned geometric continuity
requirements for circular arcs and Floater’s quintic Hermite interpolant is just one of them
(Fang, 1998). In this paper we will further prove that in fact this statement is true not only
for circular arcs but also for any conic section curves (except parabolas). We will also show
that one of these quintic polynomial curves has smaller approximation error and possesses
better shape-preserving quality comparing to Floater’s quintic Hermite interpolant.
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Fig. 1. The conic section(r) in the casew < 1, w =1 andw > 1.

The problem of interest is stated as follows. Given a conic section represented in the

form of a rational quadratic Bézier curve as

F(r) = Bo(t)po+Bl(t)wpl—i-Bz(t)pz’ fe0.1]. (1)

Bo(t) + B1(t)w + B2(1)

wherepog, p1, p2 € R? are the control pointsy € R is the weight associated witpy,
assumed positiveBo(t) = (1 — 1)2, Bi(t) = 2r(1 — 1), Bo(r) = t* are the Bernstein
basis functions, we want to find an approximating quintic polynomial curve thafis G
continuous with the conic section at the end points ahet@tinuous at the parametric
mid-point. Here the standard form ofz) is used without losing any generality. It is also
well known thatr (¢) is an ellipse whenw < 1, a parabola whew = 1 and a hyperbola
whenw > 1 (see (Farin, 1993)). Fig. 1 shows these three different possibilities.

The rest of this paper is organized as follows. In Section 2 we prove that there exist
three quintic polynomial curves satisfying the above-mentioned geometric continuity
requirements. Section 3 addresses the approximation quality of the resulted quintic curves.
Approximation of circular arcs is given as an example in Section 4 and some concluding
remarks are given in Section 5.

2. Conic section approximation
A quintic polynomial curve, when represented in Hermite form, can be written as

Q0 |
Q0
Q) = (x(t), (1) = [H1(t) Ha(t) Ha(t) Ha(t) Hs(t) Ho(1)] 8 (g’) ,
QM)
Q') |
t €0, 1], 2)
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whereQ(0), Q'(0), Q”(0), Q(1), Q’(1) andQ”(1) are the position, the first derivative
and the second derivative @(r) at+ = 0 andt = 1, respectively, andd;(r), i =
1,...,6, are the quintic Hermite polynomial functions, which are listed below without
any derivations.

Hi(1) =1—103 + 15* — 615,

Ho(t) =t — 6t° + 8% — 32,

Ha(t) = 31% = 3%+ 31 — 31°,

Ha(t) = 1063 — 15:* + 612,

Hs(t) = —4¢3 + 714 — 32,

He(t) = 363 —1t* + 31°.

Interested readers are pointed to (Hosaka, 1969) and (Hoschek, 1993) for more details

about Hermite polynomials.

It is well known that a quintic Hermite curve described by (2) can Beentinuous to
r(z) at end points by setting

Q) =r(0), Q0)=aor'(0), Q"(0)=cfr"(0)+ for'(0),
QD =r@), QM =ewr'(D), Q") =cfr"(D)+par' (D),

whereag, Bo, @1 andpi are arbitrary constants and the differential properties(of at
t =0 andr =1 are computed as

®3)

r(0) = po, r1) =pz,

r'(0) = 2w(p1 — Po), r'(1) = 2w(p2 — p1),

r"(0) = (4w — 8w?)(pr—po)  r"(1) = (— 4w+ 8w?)(p2 — pa)
+ 2(p2 — po), — 2(p2 — po).

2.1. The G-continuity atr =0 ands =1

To achieve G-continuity at the end points, the third derivatives@fr) atz = 0 and
t = 1 need to satisfy

Q" (0) = a3r"(0) + 3aoBor” (0) + yor'(0), (4a)
Q"(1) =a3r"” (1) + 3a1Bar” (1) + yr'(D), (4b)
where

r”(0) = —12(1 — w)(4w?(p1 — Po) — (P2 — Po)),
r"”(1) = —12(1 — w) (4w?(p2 — p1) — (P2 — Po)),

andyg andy; are arbitrary constants.
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SubstitutingQ”” (0) obtained from (2) and (3) into (4a), taking cross product with)
on both sides of (4a) to eliminate thg term, and using the fact that

(P2 —Po) x (P1—Po), (P2 —pP1) x (p1—Po) and (P2 —p1) x (P2 — Po)
all equal two times the area of the triangi@op1p2, (4a) becomes

—aofo + wpr + [10— 30f — 2(1 — w)ad — way — (1+ 2w — 4w?)ef] = 0. (5a)
Applying similar procedure on (4b) results in

wpo — a1B1 — [10— 302 — 2(1 — w)e — Bwag — (14 2w — 4w?)af] =0.  (5b)

From (5a) and (5b), it is clear that by selecting one sefpcdinde1, there exist a unique
solution for 8o andp; satisfying (5a) and (5b) providetha; — w? is not zero. This means
that there are infinite quintic polynomials that aré-@ntinuous wittr (r) at end points.

2.2. The G-continuity atr = 1/2

To achieve G-continuity at the parametric mid-point, we requi®él/2) =r(1/2) and
Q'(1/2) x r’(1/2) = 0. Because any point, y) € R? can be written uniquely in terms
of barycentric coordinates with respect to a triangle, the position continuity=at,/2
immediately suggests that the barycentric coordinat€¥(&j2) andr(1/2) should be the
same. Therefore, we have

whereL; andL; (i =0, 1, 2) are the barycentric coordinates@f1/2) andr(1/2) with
respect to the trianglapopip2, i.e.,

Q(1/2) = Lopo + L1p1 + L2p2
and
r(1/2) = Lopo + L1p1 + Lopo.
Direct computation 0Q(1/2) andr(1/2) gives

Lo=§ — fywaro — f(w — 20%)ato — oo~ 3y(of — o).
L1 = 2w(ao +a1) + & (w — 2w?) (a3 + a?) + Hw(Bo — 1),

T

T 5 1 2\ 2 1 1 2 2
Ly =35 — fgwai — 1—6(u) — 2w )al + Hwh1+ 3—2(a0 —al),

SubstitutingL; and L; (i =0,1,2) to Lo — L2 = Lo — L2 = 0 (since Lo = L») and
L1 =L yields

w(oo — 1) + (14w — 2w?) (ef — o) + 5w (Bo + B1) =0, (6a)

Tswlao+a1) + 15(w — 2w?) (af +af) + Hw(Bo — 1) = 7. (6b)
Furthermore, the tangency continuityrat 1/2 results in

(@0 — a1) + 35(1 — 2w) (ef — of) + 55(Bo + 1) =0. (7



L. Fang / Computer Aided Geometric Design 16 (1999) 755-766 759

Subtracting7) x w from (6a) gives
(00 — 1) (20 + 1 — 2w) =0 (8)

which shows that for the quintic polynomi&(z) to be G-continuous withr () at
t =1/2, ag anday need to satisfy eitherg — a1 =0, ag + a1 — 2w = 0, or both.

So far, we have shown that (5a) and (5b) need to be meDfor to be G-continuous
with r(r) at end points and that (6b) and (8) need to be me€¥ai to be G-continuous
with r(¢) att = 1/2. In the following we will show that there exist only three solutions
satisfying all of the four equations.

Assumingao — a1 = 0, thusBp + 81 =0, we letap = a1 =« and o = — 1 = B to
simplify notation, then (4a) and (4b) become identical as

(—2+ 2w)e® + (4w? — 2w — 4)a® — (Bw + o — wp +10=0, (9)
and (6b) becomes

5 1 1 w

bt “(w— 20+ —wB =

8wot+8(w w )O{ —l—leﬂ o or

16

= — — 100 — 2(1— 2w)a?. 10
B Trw (1-2w)a (10)

Substituting (10) into (9) yields
2w*+w—-8  2Bw-5)

—2wa® + 6a® + o
14+w 1+ w
=—-2(a—-1D|wa + (w—3a + Trw =0, (12)

for which the solutions fow can be easily found as

1, aF%((s—w)—(l—w),/Z—ii) and

1 9
ﬁzzﬂ((‘?)—w)—l—(l—w) Z—L) (12)

Distributions of these three solutions as functionsvadre shown in Fig. 2. It should be
noted that whem = 1, (11) has triple roots at = 1.
If g 4+ a1 — 2w =0, thuspBo + B1 = (Bw? — 4w — 14) (g — 1), We have

a1 =2w —ag (13a)
and
B1 = 2(8w? — 4w — 14)(ag — w) — Bo. (13b)
Substituting them into (6b) yields

Aw?+w+4)

= (4w — 2)a? — 14a
Bo= (4w — 2o o+ Tt w

: (14)

and (4a) and (4b) become
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Fig. 2. The graphs af as functions ofw.

2
—2wa8 + 1005(2) - H—w(3w2 + 3w + 8)0[()

2
— = (2w +2w?— = 1
—|—1+w(w—|— w 3w+5) o, (15a)

2
—2wo§ + (12w? — 10)f — H—w(12w4 + 12w — 17w? — 17w + 8)ao

+ i(sw5 +8w* — 16w® — 16w? + 19w — 5) = 0. (15b)
1+w
These two equations are found to have common solutige= 1 only whenw = 1.
However, this solution is included in the solutions found previously.
With the above derivation, we can conclude that for any given conic section represented

by (1), as long asv # 1, there exist three quintic polynomials that ard-&@ntinuous
with the conic section at the end points ané-&@ntinuous at the parametric mid-point.
Therefore, from (2) and lettingg = o1 = @ andgg = —pB1 = B, the approximating quintic
curveQ(¢) can be rewritten as

Q1) = Ko(t)po + K1(1)p1 + K2(1)p2, (16)

where

Ko(t) = Hi(t) — 2wa Ha(t) + [ (2 + 4w — 8w?)a? — 2wp]Ha(r) + 202 He(1),

K1(1) = 2wa(H2(t) — Hs(1)) + [ (4w — 8w?)a? + 2wp|(Hs(t) + He(1)),

Ko(t) = Ha(t) + 2wa Hs(t) + [~ (2 + 4w — 8w?)a? — 2w ] He(t) + 202 H3(1),
wherea equals 1 @1, or @ and g is obtained from (10). Note tha& o(r) + K1(r) +

K (1) = 1 reflects that they are indeed the barycentric coordinat€g0fwith respect to
the triangleApop1p2. For convenience, we denote the three quintic approximation curves
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obtained by using = 1, @1, anda2 asQo(?), Q1(¢) andQx(z), respectively. In the next
section, we will evaluate the quality of these three quintic approximation curves.

3. Approximation accuracy
3.1. Approximation error

It is well known that for any point on the conic sectiofr), its barycentric coordinates
70, T1, T2, Whererg + t1 + 12 = 1, with respect to the triangl&popip2, satisfies

F(r®) = tf(t) — dw?ro(r)t2(r) = 0. (17)

Consequently, for any cungt) approximating the conic sectiaiir), we can usef (c(t))

to see how well the approximation is. The functi6(Q(r)) = ff(r) — 4w?Ko(1)K (1) is
computed as

f(Qim) =Air*A-n*2-1% =012 (18)
where
16w2(w — 1)% 2w — D*_(w) 2(w — D)4 (w)
o=, ==_— =——~" " and
(w+1)2 w2(w + 1) w2(w + 1)
8+ (w) = (w+ 1) (2w + 9) (2w + 3) (1:F z—f‘b +2(w + 3)(8w +9).

It can be shown that & A1 < Ap < A2 and the equality happens when= 1.
Combining (12), (16) and (18), we can deduce the following remarks.

Remark 1. All the three approximation curves are always “outside” the conic section, i.e.,
Q;(®) (i =0, 1, 2) always lies on the side containipg. This is a direct result from the fact
that f(Q; (1)) is always nonnegative.

Remark 2. Qo(#), the approximation curve obtained by using= 1, is the same as the
quintic Hermite interpolant proposed in (Floater, 1997). This can be easily verified by
comparingQo(t) against the result in (Floater, 1997) with= 5.

Remark 3. Q2(¢), the approximation curve obtained by using= @», is generally
unacceptable becaus® becomes negative whan is greater than B and approaches
infinity whenw approaches zero.

Remark 4. As shown in Fig. 3, the ratia. = f(Q1(?))/f(Qo(t)) = A1/Ag decreases
exponentially asw increases. The Taylor expansion bfat w = 0 also shows that
approaches/B1 whenw approaches zero.
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Fig. 3. The graph of the error ratioas a function ofw.

Remark 5. Q1(¢), the approximation curve obtained by usiag= @1, is completely
enclosed byQo(r) andr(¢) and these three curves intersect only at0, 1/2 and 1.

Remark 6. For0< w < 3,

4 maxl, w?)(w — 1)*r
3125 1+ w)?
wheredy (Q1, r) is the Hausdorff distance betwe€n () andr (r) andi = A1/ Ao.

dp(Q1, 1) < |Po — 2p1 + p2|, (19)

To prove this theorem, we will use several lemmas proven in (Floater, 1997). First,
from Lemmas 3.3a and 3.3b of (Floater, 1997), we know @g() lies entirely inside
the triangleApop1p2 for 0 < w < 3. SinceQ1(¢) is always enclosed bg(z) andr ()
(from Remark 5)Q1(z) will also lie entirely inside the triangl&pop1p2 for 0 < w < 3.
Therefore, from Lemma 3.2 of (Floater, 1997), we obtain

1 1
QLN < g max(—z, 1) max | £(Q1(1)||po — 2p1 +p2| for0<w <3.(20)
w 1€[0,1]
Furthermore, from Lemma 3.4 of (Floater, 1997), we have

16 w?(w —1)*
F(Qu) < 375% A+ w2
Combining (20), (21) angf (Q1(7)) = Af (Qo(?)), we obtain (19) as claimed.

It should be noted that (19) is valid not only when<Ow < 3, it remains true as
long asQ1(¢) is entirely inside the triangl&pgp1p2. Given the facts thaQo(z) starts to
migrate outside the triangle when> 3 and f (Q1(¢)) is much smaller tharf (Qo(z)), itis
reasonable to assume tt@ai () will remain inside the trianglé\pop1p2 evenw is greater
than 3 (but smaller than a certain value). Therefore, (19) should be valid<tap & wo
wherewg > 3.

forallr € [0, 1]. (22)
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3.2. Shape preservation

The approximation quality is also evaluated by checking whe@ej preserve the
shape of (r). An important property of (¢) is thatr(1/2) is the only point at which the
tangent ofr (¢) is parallel to linepgp2. Similarly, whenQ(1/2) is the only point at which
the tangent of)(¢) is parallel to linepppz, we say thaQ(r) preserves the basic shape of
r (). This criterion can be written mathematically as follows.

Criterion 1. The equation

d
((th(t) X (p2 —po) =0 (22)

has only one solution at=1/2 for ¢ € [0, 1].

Direct computation of (22) gives

2 4
2wl (160 — 3 32— 24a——8 £2
1+w 1+w

6
+(10a— )t—a](pz—Pl)X(pz—Po)

+w

1

=16w(2t — 1) 2 12

= w (07 1+w
2

—(a— 1+w>l+%}(p2—m)X(Pz—po)=0-

Sincew and(p2 — p1) x (P2 — Po) are not zero, satisfaction of Criterion 1 will require the
guadratic equation

2 5 2 o
- )= a——— - 24
(a 1+w>t (oe 1+w)t+8 (24)

to have either no real roots (two complex roots), two real roots both of which are outside
[0, 1], or double roots at=1/2.

As a result, we find that as long as<O(w + 1)a < 4, (22) has only one solution at
t =1/2. ThereforeQo(¢), obtained by using = 1, will preserve the basic shape raf)
only when O< w < 3. Whena =1 andw > 3, (22) will have three real roots that are
inside [0, 1], which implies that there exist three locations@#(z) where the tangent is
parallel topgpz. In such caseo(r) will exhibit anomalies such as “camel humps” and
even loops as shown in Fig. 4.

Whena = @1, it can be easily shown thdt + 1)@ is always smaller than 4, which
means thaQ1(¢) will always preserve the basic shape &f). This good shape-preserving
property can be seen in Fig. 5 which shows a close-up(of (with w = 100) and
Q1(r) around:r = 1/2. In fact, whenw approaches infinity and(z) becomes two straight
lines defined bypg, p1 andp2, @1 is the only solution that will result in a converged
approximation curve, whose control poids(i =0, ..., 5) are given by

(23)

Bo=po., Bi=p1+z(P1—Po)., Bz=Bz=pu,
B4=p—%(p2—P1), Bs = p2.



764 L. Fang / Computer Aided Geometric Design 16 (1999) 755-766

Fig. 5. A close-up of () (w = 100, in thick line) andQ (z) (in thin line) around = 1/2.

Besides preserving the basic shape @§, Q1(r) also enjoys better quality in terms
of the curvature distribution. For example, Fig. 6 shows that wi{€r) successfully
preserve the curvature characteristics @j (with w = 2.7) which has a single peak in its
curvature distributionQq(#) fails because it has two peaks and one valley in its curvature
distribution. The numeric results also show t@atr) will maintain the convexity (free of
inflection points) untikw is approximately 23 whil®o(z) is free of inflection points only
whenw < 3.

4. Example: circular arcs

When ||popzll = |IP1p2ll and w = cost where 6 is the angle/pipop2, the conic
section described by (1) becomes a circular arc of angular spaR@® a unit circular
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Fig. 6. A sample curvature graph fo@t) (w = 2.7) and its approximation curvédo(r) andQ1(z).

arc with arc’s center located at the origififQ(z)) can be related to the radial error
¢(1) =x%(1) + y*(1) — L by

cogo co<o
t = =
1(Q®) sin? e Sirf o
Thus, the two quintic curves, obtained by using- 1 anda = @1, approximating the
unit circular arc would have radial errors as

(x2(0) + y2(r) — 1) o(1). (25)

_ 16(1—cos))°® , 4 2 _
do(t) = i cow t*(1—1n"(2t —1)° whena=1and (26a)
2(1— cosh)%5_
P1(t) = %t‘l(l —n*2r—1? whena =a1. (26b)

In (Fang, 1998), these two quintic curves, represented in Bézier form, and their radial
errors were also derived. However,(r) was not expressed as an explicit equation. This

is because the circular arc was represented by trigonometric functions instead of rational
polynomials, which makes it difficult to simplifg1(7) into a concise form.

5. Conclusion

Unlike in (Floater, 1997) in which the geometric Hermite interpolant is given for any
odd degree:, we only focus on quintic polynomials in this paper. We proved that for
any conic section (except parabolas) described by (1) there exist three quintic polynomial
curves that are &continuous with the conic section at end points andcGntinuous
at the parametric mid-point. Among these three quintic curves, one is the same as the
quintic interpolant presented in (Floater, 1997) and one of the other two new curves is
proven to have much smaller approximation error and better shape-preserving property.
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This new quintic approximation curve can be used to construct a spline approximation of
r(t) with Ct and G'-continuity by recursively subdividing) using the scheme discussed
in (Floater, 1995), and creating a new approximation curve for each subcurve. It can also be
used in approximating rational tensor-product biquadratic Bézier surfaces such as spheres
and torus.

Based on the ideas presented above, it may be possible to find polynomials of odd
degreen, other than Floater's Hermite interpolants, that are 4continuous with the
conic section at end points and-@ontinuous at the parametric mid-point. (In fact, we can
easily verify that there exist one unique solution whes 3.) However, the computation
involved for higher degree polynomials & 7) will be much more complicated and the
result might need to be derived numerically.
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