
ELSEVIER Computer Aided Geometric Design 14 (1997) 135-151 

COMPUTER 
AIDED 

GEOMETRIC 
DESIGN 

An O(h 2n) Hermite approximation for conic sections 

Michael  S. Floater  l 
SINTEE P.O. Box 124, Blindern, 0314 Oslo, Norway 

Received November 1994; revised March 1996 

Abstract  

Given a segment of a conic section in the form of a rational quadratic B6zier curve and any 
positive odd integer n, a geometric Hermite interpolant, with 2n contacts, counting multiplicity, is 
presented. This leads to a G '~-t spline approximation having an approximation order of O(h2'~). 
A bound on the Hausdorff error of the Hermite interpolant is provided. Both the interpolation and 
error bound are extended to an important subclass of rational biquadratic B6zier surfaces. For low 
n, the approximation provides a method for converting the so-called analytic curves and surfaces 
used in CAGD to polynomial spline form with very small error. 

Keywords: High order approximation; Conic sections; Splines 

1. I n t r o d u c t i o n  

It was described in a recent paper (Floater, 1995), how one can approximate a conic 
section, in the form of a rational quadratic B6zier curve r, by a quadratic spline having 
order of  continuity C l and G 2 and order of  approximation O(h4). Moreover an explicit 
error bound, having the same convergence order, was constructed. The error bound pro- 
vides a simple method for converting conic sections and surfaces such as the sphere, 
torus, cone and cylinder to quadratic spline and tensor-product quadratic spline form. 

The approximation method in (Floater, 1995) consists essentially of  quadratic geomet- 
ric Hermite interpolation. In the present paper we present a geometric Hermite interpolant 
of  any odd degree n and an upper bound on the Hausdorff error. The interpolant has a 
total number of  2n contacts with the conic; n - 1 at the end-points and 2 at the midpoint. 
It follows from recent work by Degen (1993) that the approximation order is O(h2n), 
where h is the maximum length of  the parameter intervals, under recursive subdivision. 
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Scherer (1996) has recently studied O(h 2n) approximations to general planar curves by 
polynomials of degree n. 

The spline approximation, formed by piecing together the sequence of Hermite inter- 
polants, must have G n-2 continuity since the order of contact at the end points is n - 2. 
But if the conic is subdivided in the correct (symmetric) way, as in (Floater, 1995), the 
continuity of the spline is raised to C 1 and G n- l ,  the latter meaning that the spline 
is C n-~ with respect to arc length. Discussions of both arc length and Frenet frame 
geometric continuity are given in (Dyn and Micchelli, 1988) and (Gregory, 1989). 

Thus this paper serves two purposes; one practical and one theoretical. 
(1) For small n such as three or five, the approximation provides a very efficient 

method of converting analytic curves and surfaces to polynomial spline form. 
(2) The interpolant shows that O(h 2n) Hermite interpolation for planar curves is pos- 

sible for arbitrarily high n. 
The technique used to find the Hermite interpolant approximating the conic section r 

is to use the implicit form of r, namely f ( r )  = 0, where f is the appropriate bivariate 
quadratic polynomial. This idea was first introduced by Dokken et al. (1990) in their 
construction of O(h 6) cubic approximations to the circle. One finds an approximating 
curve q for which f (q )  is small. One then argues that if f (q )  is small, then q is 'close' 
to r. 

How do we construct q to make f (q )  small? Lyche and Merken (1994) found that for 
odd n there is a sequence of polynomial approximations in t to a circle at a point. The 
nth approximation consists mainly of a geometric series in t 2 and is shown to be O(h2n). 
The fact that such a sequence exists was the inspiration for our construction of the two- 
point (actually three-point) Hermite approximation q. We expand the denominator of r 
as an asymptotic expansion in the variable a = w - 1, where w is the central weight in 
the rational form of r, and add a correction term. 

The fact that one can expand r in terms of a polynomial reveals the advantage of 
working with the general conic section in rational B6zier form rather than with the 
specific case of a circle. The cubic circle approximations in (Dokken et al., 1990) involve 
trigonometric functions rather than polynomials and this probably makes it difficult to 
generalise them to arbitrary degree. In the framework of the present paper, the conic 
section is regarded as a generalisation of the parabola rather than the circle. 

A bound on the Hausdorff distance between the approximant and the conic is found 
in terms of the maximum of f (q )  using the special form of f and its derivatives as a 
B6zier triangle. At the same time it proved that for a large range of possible r ' s - -a l l  the 
elliptic cases and many of the hyperbolic ones--the curve q lies inside the convex hull 
of the control polygon of r. 

In a similar way, we can approximate surfaces which are tensor-products of conic 
sections by tensor-product splines of degree n~ in one parameter and n2 in the other. 
These have order of approximation O(h 2n~ ) in the first parameter direction and O(h 2'~2) 
in the other. The orders of continuity are G TM-  l and G n2-1 respectively. Two numerical 
examples, the approximation of a sphere and torus respectively, show how small the error 
of the approximation is. 
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We have  not  der ived  in this paper  a range  on w for which q is a regular  curve but  
it is c lear  that  when  w is c lose  enough  to 1, this is cer ta inly  true and it fo l lows  that  by 
subdiv id ing ,  the spl ine  approx imat ion  is eventua l ly  guaranteed to be regular.  

The  paper  is o rganised  in the fo l lowing  way. The Hermi te  in terpolant  is p resented  
in Sect ion  2 and at the end a b r ie f  der ivat ion  of  the C 1 and G '~-I  cont inui ty  of  the 
resul t ing  spl ine  approx ima t ion  is provided .  The  error  bound  is der ived  in Sect ion 3. The  
in te rpolan t  and er ror  bound  are ex tended  to surfaces in Sect ion 4 and numer ica l  examples  
are d i scussed  in Sect ion 5. 

2. The Hermite interpolant 

We wil l  app rox ima te  the ra t ional  quadrat ic  B6zier curve 

r ( t )  = B ° ( t ) P °  + Bl  ( t ) w p ,  + B 2 ( t ) p  2 
Bo(t) + BI (t)w + B2(t) ' (1) 

where  P0, P l , P 2  E ~2 are the control points, w E R is the weight associa ted  with p j ,  
a s sumed  posi t ive,  Bo(t) = (1 - t) 2, B1 (t) = 2(1 - t)t, B2(t )  = t 2, are the Bernstein 
basis functions, and t is in the range [0, 1]. r is said to be in normal  fo rm and it is well  
k n o w n  that  r is an e l l ipse  when w < l ,  a pa rabo la  when w = 1 and a hype rbo l a  when 
w > l ;  see (Farin,  1988). It wil l  help  to refer  to the curve as r0 when w = 1. Fig.  1 
shows the var ious  possibi l i t ies .  The quant i ty  a = w - 1 can be thought  of  as a measure  
o f  the ' r a t iona l i ty '  o f  r and will  be used in the construct ion of  a Hermi te  approx imat ion .  

Let  ~b = ~b(t) = 2(1 - w)(1 - t)t so that we can write the denomina to r  of  r as 1 - ~b(t). 
Note  that  ~b is smal l  when w is c lose  to 1. We can then express  r in the more  useful  

form 

r ( t )  = a 0 ( t ) p  0 + d l ( t ) p  I + d2 ( t )p  2, (2) 

.-/.," // \ w>l 
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Fig. 1. The conic r in the cases 0 < w < 1, w = 1 and w > 1 and the B6zier points of f .  
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where 

_ ~l_-_~/~f~ Jl(t)  - 2w(1 - t ) t  t 2 & ( t )  ' 1 - ¢ ( t )  ' J2(t) - 1 - ¢(t--------~' (3 )  

and of  course Y'~=o Ji = 1. We also define m = ( n -  1)/2. Recall from geometric series 
that 

m - I  _ ~3 m 

¢~  - 11 
¢ 

i = 0  

For odd n, n ~> 3, we shall show that the polynomial curve q, of  degree n, 

q(t) = Ko( t )p  o + KI (t)pl + Kz(t)pe,  (4) 

where 
m -  1 

Ko(t) = (1 - t): ~ ¢~ + ( i @ ) ¢  m, 
i = 0  

m - [  
W m 

KI (t) = 2wt(1 - t) E ¢ i  + ~ ¢  , (5) 
i = 0  

m - 1  
t m 

Ka(t)  = t 2 E ¢ '  + 1---~w ¢ ' 
i = 0  

is a geometric Hermite interpolant to r. Note that if w = 1, then ¢ = 0 and q(t) = 
r(t)  = r0(t). Note also that, for all w, q(0) = r(0) = P0 and q(1) = r(1) = Pz. 

Why have we chosen q to have this particular form? Using the fact that one can write 
the denominator of r in (1) as 1 - ¢( t ) ,  one can expand, for example, Jo(t) as a series 
in ¢ :  

Jo ( t ) - -  ( l - t )  2 = ( 1 - t ) 2 ( 1 + ¢ + ¢ 2 + ¢ 3 + . . . ) .  
(1 ¢ )  

So the first term of  Ko(t)  is a truncation of  this series up to the term ¢m-1 .  This is as 
high as one can go without exceeding degree n = 2m + 1 since ¢ has degree two. This 
expansion makes the difference q(t) - r(t) small. The remaining terms in the Ki  were 
chosen in such a way that the Hausdorff distance between q and r is even smaller. We 
regard these extra terms as 'correction' terms. 

In what follows, we will need to consider the implicit form of a conic section. Any 
point (x, y) E IR 2 can be written uniquely in terms of  barycentric coordinates To, rl ,  72, 
where ~-o+ TI + r2  = 1, with respect to the triangle Ap0plp2: (x, y) = 7 -0P0- t -T ip  I + T 2 p  2. 

Consequently any function f : R 2 --+ R can be expressed as a function of TO, TI, ~-2- The 
following lemma is well known and is given, for example, in (Farin, 1988). In fact 
it is immediate from (2) and (3) since the J~ are barycentric coordinates for r and 
J~(t) - 4w2 Jo(t)J2(t)  = O. 

L e m m a  2.1. Let f : IR 2 --+ R be defined as 

f(x, y )  = ~1 ~ - 4 w 2 . o ~ 2  
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Then the curve r satisfies the equation f ( r ( t ) )  = O for all t. 

Fig. 1 depicts f in B6zier form. At this point we observe that the K~ have been chosen 
so that they sum up to one. Indeed, from (3) one can rewrite them as 

Ko(t)  = Jo(t)(1 - c m )  + C~0¢m, 

K l ( t )  = J l ( t ) (1  - e ra )  + 0q~jrn, (6) 

K2(t )  = J2(t) (1 - e ra )  + c~2¢m, 

in which 

1 - t  w t 
- -  , o q ( t )  - -  , o ~ 2 ( t )  = ( 7 )  c~0(t) 1 + w 1 + w 1 + w" 

Therefore, since ~ J~ = ~ c~i = 1, we find that ~ K~ = 1. This is convenient because 
it means that the Ki  are barycentric coordinates for q and so 

f ( q ( t ) )  = K~(t)  - 4wZKo(t)K2(t) ,  (8) 

which is a polynomial of  degree 2n. Now it remains to simplify the right-hand side of  
(8) in order to factorize f (q ( t ) ) .  

L e m m a  2.2. The polynomial f ( q ( t ) )  can be factorized as 

w 2 
f ( q ( t ) )  - (1 + w) 2 ( 2 t -  1)2¢2m(t) 

/132 
= 2  '~-j - - ( w -  1 ) n - l ( 1 -  t ) n - l t n - Z ( 2 t -  1) 2. 

(1 + w) 2 

Proof .  Substituting the expressions in (6) into the right-hand side of  (8) leads to 

f ( q )  = ( j2  _ 4w2joJ2)(1 - ~bm) 2 + (2Jla~ - 4wZ(J0o~2 + J 2 o t 0 ) ) ( I  - ~bm)~) m 

+ (O~ -- 4w2c~0ot2)~b 2m. 

The first term is zero from Lemma 2.1 and the second is zero due to the particular choice 
of  the c~i. As a consequence, 

/1)2 
f ( q ( t ) )  = (c~(t)  - 4w2ao(t)c~2(t))¢2'~(t) - (1 + w) - - - - - 5  (2t - 1)2¢2m(t), 

as claimed. [] 

It follows that q is a geometric Hermite approximation to r. The curve q has a total 
number of  2n contacts with r since the equation f ( q ( t ) )  = 0 has 2n roots inside [0, 1]. 
In fact, the two curves meet at three values of t: 0, 1/2, 1. To see that q (1 /2)  = r (1 /2) ,  
a short calculation reveals that J0(1/2)  = J2(1/2)  = a0(1 /2)  = c~2(1/2) = 1/2(1 + w) 
and J1(1 /2)  = cq(1 /2 )  = w/(1  + w), so that from (6), K~(1/2)  = J i (1 /2 ) ,  for i = 
0, 1,2. 

Notice that when n = 3, the polynomial f ( q ( t ) )  has degree six and two zeros at 
each of  the values t = 0, 1/2, 1. In the special case when r iS a circle, this must be a 
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constant multiple of  the polynomial found in (Dokken et al., 1990). This means that the 
approximation q can be regarded as a generalisation of  the first cubic approximation in 
(Dokken et al., 1990) to both conic sections and for general odd degree n. 

Notice also that f (q ( t ) )  is non-negative for any n and t, which implies that q always 
lies to one side of  r, in fact the side closest to the point Pl. 

Continuity of the spline approximation. By recursively subdividing r, using the scheme 
discussed in (Floater, 1995), and applying the Hermite approximation to each subcurve, 
one obtains a spline approximation. The unusual aspect of this spline curve is that its 
continuity is higher than expected, namely C 1 and G n-1 due to the symmetry inherent 
in r and the subdivision scheme. 

Briefly, r can be affinely mapped into ~, either a circle or an equilateral hyperbola, 
symmetric about the x-axis (Floater, 1995). Then the two subcurves rl ,  r2, are symmetries 
of  each other. Using the facts: (a) that q, the spline approximation to ~, consisting of  
the two Hermite approximations, is symmetric about the x-axis, (b) that q is G n-2,  and 
(c) that n - 2 is odd, one can deduce that q is both C 1 and G n - I  . Since parametric and 
geometric continuity are invariant under affine transformations, it follows that the spline 
approximation to r inherits the same orders of  continuity. The same argument applies to 
any depth of  subdivision. 

In fact, we can reparametrize this symmetric q with respect to arc length s and write 
q(s) = (x(s) ,y(s)) ,  for s > 0, and q(s) = ( x ( - s ) , - y ( - s ) ) ,  for s < 0. Then, using the 
Leibnitz rule, one differentiates the equation qt(s).qt(s) = l, n - 2 times and, since q 
has all derivatives up to n - 2 at s = 0, one obtains 

( q ( n - ' ) ( 0 + )  - q ( n - ' ) ( 0 - ) )  . q ' (0) = 0. 

But q'(0+)  = (x'(0), y'(0)) and q ' (0 - )  = ( -x ' (0 ) ,  y'(0)) mean that q'(0) = (0, y'(0)). 
Therefore 

( q ( n - ' ) ( 0 + )  - q ( n - 0 ( 0 - ) )  • e2 = O, (9) 

where e2 = (0, 1). 
Now differentiating q(s) in the two cases s > O, s < 0 we also find, since n -  1 is even, 

that q (n -O(O+)  = (x(n-l)(O),y(n-U(O)) and q ( n - I ) ( O - ) =  (X(n--l)(o),--y(n--O(O)) 

and so 

- : ( o ,  

from which it follows that 

( q ( ' ~ - ~ ) ( o + )  - q ( ~ - ~ ) ( o - ) ) ,  el  = o ,  (lO) 

where el = ( l ,0 ) .  Finally, (9) and (10) imply that q (n - l ) (0+ )  - q ( n - 1 ) ( 0 - )  = 0 and 
that q is G n - l  at s = 0. That q is C l with respect to t, is an immediate consequence of  
the symmetry coupled with the fact that q is G l . 
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3. The  error bound 

In order to implement the Hermite interpolation in practice it is important to have a 
bound on the error of approximation. In this paper we are not concerned with the usual 
type of approximation of  the form q(t) ~ r(t) .  Instead we wish to bound the Hausdorff 
distance discussed by Degen (1992), 

dH(q, r) = max (dl (q, r), d2(q, r ) ) ,  

where the two one-sided distances are 

and 

d l ( q , r )  = max rain ] q ( s ) -  r( t) l  
tE [0,1] sE [0,1] 

d2(q , r )  = max min tq(s)-r(t)l. 
sE[0,1] tE[0,1l 

The main theorem in this section is the following. 

Theo rem 3.1. l f  O < w <~ 3 then 

( max( l 'w2)  (w - 1)n-1 1 1 -  I P 0 -  2pl + p2l. 
dH(q,  r) < (1 + w) 2 ~-nTi 

The two salient features in the bound are the terms ( w -  1) '*-I and ]Po -  2Pl + P2[. In 
a previous paper (Floater, 1995) it was shown, using a particular recursive subdivision 
scheme for r, consisting of alternately subdividing at the midpoint and normalising each 
subcurve, that the quantity a = w - 1 is O(h2). It was further shown that the quantity 
]P0 - 2Pl + P2], essentially a second order difference, is also O(h2). It follows that the 
error bound above is O(h2~), which is of the same order as the approximation itself. 

It is also interesting to point out that considerable reduction in the error can he made 
purely by increasing n, while leaving a fixed, especially if a is already small. Indeed 
with the proviso that ]a] < 2, we see that dH(q, r) converges to zero as n tends to 
infinity with order O((a/2)~- l /n) .  

The remainder of this section is devoted to proving the theorem. The first element 
in this direction is a general lemma concerning any continuous curve p, of  which q is 
a specific example. By consdering the direction P0 - 2pl + P2, we bound the distance 
between r and p in terms of the maximum of ]f(p(t))] .  Since f is quadratic, it may in 
general have two zeros along any straight line. In order to make sure we are close to the 
right one we have to restrict p to being inside the triangle ApoPlP2. 

L e m m a  3.2. Suppose that p : [0, 1] -4 N 2 is any continuous curve which lies entirely 
inside the (closed) triangle Ap0plp2 and such that p(0) = P0 and p(1) = P2. Then , ( 1 )  

d n ( p , r )  ~< ~ m a x  ~-~,1 max I f ( p ( t ) ) l [ p o - 2 p , + p 2 l .  
tE[0,1] 

Proof.  Let t E [0, 1] and consider the (infinite) straight line i passing through the point 
r( t) ,  parallel to the vector -P0  + 2Pl - P2. We know that p(0) /=  Po, p(1) = P2 and that 
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the curve p is continuous. Because P0 and P2 lie on opposite sides of  !, it immediately 
follows that p must intersect it at some point p(s) ,  for some s C [0, 1], though not 
necessarily uniquely. Similarly, given s E [0, 1], there is a straight line ! passing through 
the point p(s) ,  and there must also be a corresponding (unique in this case) t E [0, 1] 
such that r( t )  lies on the line 1, since p is inside Ap0pda 2. From these observations and 
the definition of the metric d n ,  we see that riB(p, r) is bounded by the maximum of the 
furthest distance between p and r along all lines parallel with - P o  + 2pl - P2. 

Now suppose that r( t)  and p(s )  lie on the same line I, parallel with - P o  + 2p, - P2. 
From now on we assume that t ~< 1/2 since a similar argument is applicable to the 
remaining cases. First of all, since one can write r in the form 

r( t)  = (Jo(t)  - J z ( t ) ) p  o + J l ( t ) p ,  + 2J2(t)e,  

where e = (Po + P2)/2 it follows that the point r( t )  lies in ApoP,e  since 

(1 - t )  2 - t z 1 - 2t 
J o ( t )  - g 2 ( t )  - - >1 o .  

1 - ¢ ( t )  1 - ¢ ( t )  

In order to find out where the line I intersects the edges of  the triangle write r( t)  in the 
form 

r( t)  = (1 - ~1)((1 - u)p  o + ue) + ~1((1 - u)p  o + up , ) ,  

and by comparing coefficients one finds that 

u = 1 + a2(t)  - Jo( t )  and ~1 = J i ( t ) / ( 1  + J2(t)  - ao( t ) ) .  

With these values, the line intersects the edge po e at the point 

P3 : (1 -- u )p  0 + ue, 

and intersects the edge PoP1 at the point 

P4 = (1 - u ) p  0 + uPl.  

Now consider 9 : [0, 1] --~ R, the restriction of f to the line segment P3P4: 

g ( ~ )  = f ( ( 1  - ~ ) P 3  + ~ P 4 ) .  

The values of  9 at 0 and 1 can easily be evaluated by evaluating f as a quadratic Bdzier 
curve along edges po c and PoP, respectively. Indeed 

9(0) = - ( 2  - u ) u w  2 and 9( I )  = u 2. 

By restricting f to the the segment epl ,  and then computing the second derivative along 
it we also see that when P3 = e and P4 = Pl (i.e., u = 1), 

g"(~) = 2(1 - w2). 

Using the fact that any directional second derivative of  f is constant, one can then readily 
verify that in general 

g(~) = - ( 1  - ()2w2u(2 - u) - 2(1 - ( ) (w2u(1 - u) + (2u2. 

Therefore, 

g' (~)  = 2u((1 - ¢)w 2 + ~ ( u +  w2(1 - u ) ) ) .  
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As a consequence, g ' (()  /> 2umin(w 2, 1) for all ~ E [0, 1] and g is monotonically 
increasing. Therefore, recalling that 

r ( t )  = (1 - ~1 )P3 4- ~ l P 4  

and t h a t / ( r ( t ) )  = 0, we must have that g(~l) -- 0 and g(~) < 0 for 0 ~< ~ < ~l and 
g(~) > 0 for (1 < ( ~< 1. But since p(s) lies on the line ! and p lies inside Ap0PlP2, 
there must exist (2 E [0, 1] such that 

p ( s )  = (1 - -  ( 2 ) P 3  4- (2P4"  

There are two possible cases: (2 ~> (1 and ~2 ~< (t .  In the first, observe that 

& 

g((2) = g(~2) - g(~l) = / g ' ( ~ )  d~/> 2umin (w 2, 1)(~2 - ~l), 

& 

while in the second, 

P 

-g( (2)  = g((l)  - g((2) = / g ' ( ~ ) d ~ / >  2u min (w 2, 1)((1 - ~2)- 

& 

In either case, 

1~2 - (,] ~ max 1 Ig((2)l, 

or in other words 

, p ( s ) - r ( t ) ,  ~< 1 ( 1 ) 
IP4-P3]  ~-~umax If(p(s))l. 

But 
u 

[P4 --  P3I -~ ulPl - cl = ~ l P o  - 2 P l  + P21 

implies that 

Ip(s)-r( t )  I ~< ~max  ~-~,1 [f(p(s))  I [ p 0 - 2 p l  +P21, 

and hence the required estimate follows by taking the maximum over s. [] 

In order to apply Lemma 3.2 to the curve q we will require that q lies entirely inside 
the triangle Apoplp2. The following two lemmas show that this is the case when r is 
elliptic and in many of the hyperbolic cases too (0 < w ~< 3). For w > 3, it is not 
surprising that q is badly behaved since then I~b(1/2)l > 1 and the series in the K~ are 
divergent as n ~ cx3 (numerical examples were run to confirm this; as one increases w 
beyond 3, parts of the approximation curve move outside the triangle and convexity is 
lost even though r always remains inside). We show in addition that q lies entirely on 
the same side of the parabola r0 as r, in the two cases, 0 < w < 1 and 1 < w <~ 3. 
Fig. 2 illustrates the various possibilities. 
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q(t) 

/, 

PO / /  

Pl 

q(t) 
e r ( t )  

% 

- -  -?e ' -  

r o (t) 

~- • r(t) 

(Po + P2)I 2 

l<w<=3 

0<w<l 

Pa 

Fig. 2. Where the points r(t)  and q(t) are in relation to ro(t) in the cases 0 < w < 1 and 
l < w ~ < 3 .  

L e m m a  3.3a. I f  0 < w < 1 (i.e., all the elliptic cases) then the curve q lies inside the 
(closed) triangle Apoplp2 .  Furthermore, if the triangle is considered to be split into two 
halves by the curve ro then q (like r) lies in the half not containing Pl. 

Proof .  To show the first statement it is necessary to show that Ko(t) ,  K1 (t), and K2(t)  
are all nonnegative for t C [0, 1]. This is a trivial consequence of  their definition in (5) 
since ~b > 0. Due to the convexity of  ro, the second statement holds if  Ko(t)  >>. (1 - t) 2 
and K2(t)  >>. t 2. This is also self-evident from (5) since Ko can be written as the sum 
of  (1 - t) 2 and positive quantities and l i kewi se / (2  can be written as the sum of t 2 and 

posit ive quantities. [] 

The hyperbolic  case is a little more tricky. We found that there is a relatively easy 
proof  for Lemma 3.3b, by induction on n, due to some recursive identities. To indicate 
the dependency of  the K i  on n in (5) we write Ki ,n.  Then the identities are 

K0,n = (1 - t) 2 + ~bKo,n-2, 

Kl ,n  = 2wt(1 - t) + ~bKl,~-z, (11) 

K2,n = t 2 + ~b K2,n-  2, 

which hold for n = 5, 7, 9 , . . .  and follow easily from definition (5). Notice that these 
also demonstrate that the Loo limit of  g i ,n  as n -+ oo is Ji as long as 0 < w < 3. In fact, 

K i , .  - d i  = ~b(Ki,n-2 - d i ) ,  

which means that IIKi,n - dilloo -+ 0 as n --+ cc because I~b(t)l ~< I~b(1/2)l = i1 - wl /  
2 < 1 .  

L e m m a  3.3b. I f  1 < w ~< 3 (r  is hyperbolic) then the curve q lies inside the triangle 
ApoPlP2.  Furthermore, if the triangle is considered to be split into two halves by the 
curve r0 then q (like r) lies in the half containing pj. 

Proof .  As before, the first statement is equivalent to the condition that No( t ) ,  K l  (t), 
and N2(t)  are all nonnegative for t C [0, 1]. Meanwhile,  since ro is convex, the second 
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statement holds if Ko(t) <~ (1 - t) 2 and K~(t )  <. t 2. Thus it is sufficient to show that 
0 <. Ko(t) <. (1 - t) 2 and 0 ~< K2(t )  ~< t 2 since this immediately implies that 

K, ( t )  = 1 - Ko(t) - K2(t) >1 2(1 - t)t  >>. O. 

Consider  the first case, n = 3. Because 1 < w ~< 3 and t ~< 1, 

2 ( w -  1)t , ( I  2 ( w -  1) '~( 1 
K o , 3 ( t ) =  (1  l ~ w  ) ( i - t ) 2 )  ,, iq---w- ] - t ) 2  

The non-negat ivi ty  of  K2,3 is demonstrated in a similar way. Furthermore,  the negativity 
of  ~b implies that Ko,3(t) <. (1 - t) 2 and K2,3(t) ~< t 2. 

We prove the hypothesis  for n = 5, 7, 9 , . . .  by induction, applying (11) and observe 
that ~ < 0. Suppose the hypothesis  of  the lemma holds when n is replaced by n - 2. 
Now, since ~b < 0 and Ko,n-2(t) ) O, it is clear that Ko,n(t) <~ (1 - t )  2. In a similar way 
one finds that K2,n(t) <~ t 2. On the other hand, since w ~< 3 and Ko,n-2(t) <~ (1 - t) 2, 
one finds that 

Ko,n(t) >1 (1 - t) 2 - 4(1 - t) t(1 - t) 2 = (1 - t)2(1 - 2t) 2 >1 0. 

Similarly, 

K2,n(t) >~ t 2 - 4(1 - t ) t .  t 2 = t2(1 - 2t) 2 ) 0, 

and this completes  the induction step. [] 

It remains to get an upper bound on the polynomial  f ( q ( t ) ) .  This bound is valid for 
all w and fol lows directly f rom L e m m a  2.3. 

L e m m a  3.4. For all t E [0, 1], 

( W 2 ( W -  1) n - I  1 1 -- 
0 ~< f ( q ( t ) )  ~< (1 + W) - - - - - - - - ~  ~',~--r 

Proof .  Let  F(t)  = (1 - t )m(2 t  - 1)t m. We find the max imum and min imum of  F over 
t in the range [0, 1]. Indeed, 

F'( t )  = (1 - t ) m - l t m - I  ( - mt(2 t  - 1) + m(1  - t ) (2 t  - 1) + 2(1 - t)t) 

= - ( 1  - t ) m - l t  m - l ( ( 4 m +  2)t z -  (4m + 2)t  + m ) .  

So F'( t )  = 0 implies that t = ti = 1 /2  + 1 / V / 2 ( 4 m  + 2), i = 1,2. But n = 2 m  + 1, so 
ti = (1 + 1 / v ~ ) / 2 .  Further, t2 = 1 - h ,  and therefore (1 - ti)ti = (1 - 1/n) /4 .  Also 
2ti  - 1 = + l / v ' ~  and so 

F(t i )  = 4 grn 

The m a x i m u m  of  f ( q )  occurs at one of  the values ti and since 

w 2 
f ( q ( t ) )  = 2 ~ - '  (1 + w) - - - - - ~ ( w -  1 ) n - ' F 2 ( t ) '  
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the lemma is complete. [] 

Finally, we combine Lemmas 3.2, 3.3, and 3.4 to prove Theorem 3.1. 

Proof  of  Theorem 3.1. For 0 < w ~< 3, Lemmas 3.3a and 3.3b show that q lies inside 
Ap0plp2.  Then we may apply Lemma 3.2 to get 

d H ( q , r )  ~< ~ m a x  ~-7 1 max ly(q(t))l I p o - 2 p l  +p21. 
rE[o,1] 

So from Lemma  3.4, we find 

max(1,w2) ( w - 1 ) n - I  1 ( 1 )  n - I  
d H ( q , r )  ~< ~ w - ~  ~ n l - I P 0 - 2 P ,  +P2I ,  

as c la imed  [] 

4. Approximation of  surfaces 

In this section we show how one can, in a similar way, also approximate the rational 
tensor-product biquadratic B6zier surface 

2 2 
~'-~ i =0 ~-~j =0 Bi (U) Bj (1))wij Pij 

r (u ,  v) = 2 )- , (12) 
E j : 0  B ( )Bj(v)w j 

with Pij E t{ 3, provided that 

woowij = wiowoj. (13) 

Assuming (13), we can first reparametrize r in such a way that the new weights are 

w l w 2  w l  , 

1 w2 1 

and we can then re-express r in the form 

2 2 

r(u,  v) = ~ ~ Ji,,~,(u)Jj.~,2(v)pij. 
i=o j=o 

Here the subscripts wt and w2 indicate the obvious dependency of the Ji  on w in (3). 
The geometric Hermite interpolant is then the tensor-product polynomial surface 

2 2 

i=O j=0 

We now analyse the Hausdorff  distance between these surfaces. In order to use the 
error bound already developed in the curve case, we make the definition 

E(w,n)  = m a x ( l ' w 2 )  ( w -  l) n - I  1 1 - (14) 
(1 + w): n 
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Let p" 12 --4 $3 and q : 12 ~ R 3 be any pair of  continuous surfaces defined on the unit 
square 12 -- [0, 1] × [0, 1]. The Hausdorff  distance is then 

dH(p, q) = max (dl (p, q), da(p, q)) ,  

where the two one-sided distances are 

d l ( p , q ) =  max min Ip(ul ,v l ) -q(u2,v2)]  (15) 
(u2,v2)~2 (ul ,vl) c y2 

and 

d 2 ( p , q ) =  max min ]p(ul,v,)-q(u2,v2)l. 
(u, ,v,)~ ~ (u2,v2)C~ 

Now consider the following lemma. 

(16) 

Lemma 4.1. The Hausdorff distance between p and q is bounded by the Hausdorff 
distances between corresponding isoparametric curves in either variable: 

d H ( p , q )  ~< max dn(p( . ,v ) ,q( . ,v ) )  and d n ( p , q )  ~< max dn(p(u , . ) ,q(u , . ) ) .  
V U 

Proof. It follows from definition (15) that 

dl (p, q) = max max min min [ p ( u l , v j ) - q ( u 2 , v 2 ) [  
11'2 V2 U l  Vl 

<~ max max min ]p(ul,  v) - q(ua, v) I 
V U2 U l  

= max d, (P( ' ,  v) ,  q( ' ,  v)). 
'/3 

So the (one-sided) distance of p from q is bounded by the maximum of the distances 
of  corresponding isoparametric curves in the first parameter. A similar inequality relates 
the distance (d2) of  the second surface from the first and taking the maximum of these 
yields 

dH(p,q) <~ max dH(p(. ,v) ,q( . ,v)) .  
V 

The same argument applies to isoparametric curves in the second parameter. [] 

Now let al = wl - 1 and a2 = w2 - 1. Lemmas 3.3 and 4.1 and Theorem 3.1 are 
used to prove the following. Recall the definition of E in (14). 

Theorem 4.2. I f  0 < wl <<. 3 and 0 < w2 <<. 3, then 

d H ( q , r )  ~< E(Wl,nl )  max IPo,j - 2pl,j  + P2,j] 
j=0,1,2 

+ E(w2,n2) max IPi,o - 2Pi,i + Pi,21. 
i=0,1,2 

Proof .  We define the intermediate surface g : 12 --4 1~3 as 

2 2 

g(u, v) = (u)Kj,.2,w2(v)p j. 
i=o j=o 
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Since dH is a metric, we may use the triangle inequality, 

dH(q,  r) ~< dg(q, g) + dH(g, r). 

Now it follows from Lemma 4.1 that 

dH(q ,g )  ~< max dH(q(.,v),g(.,v)). 
' t )  

But for all v, 
2 

q(u, v) = ~ Ki,n,,~, (u)qi(v)  and 
i=0  

where 
2 

qi(v)=~-~Kj,~2,w2(v)pij. 

2 

g(u ,v)  :~_jJi,w,(u)qi(v), 
i=0  

j = 0  

Therefore both curves q(., v) and g(., v), share the same three control points and central 
weight. So we can apply Theorem 3.1 with 0 < wl ~< 3. Further, Lemmas 3.3a and 3.3b 
show that when 0 < w2 ~< 3, the basis {Kj,n2,w2 } forms a partition of unity. Thus 

d n ( q , g )  ~< E(w, ,n l ) lq0(v)  - 2ql(v ) + q2(v)[, 

<<. E(wl,nl) max IP0d - 2Pl,j +P2,jl" (17) 
j=0 ,1 ,2  

It is a standard fact that the basis {di ,~ } forms a partition of unity whenever w > 0. 
By considering isoparametric curves in v (fixed u), and applying Theorem 3.1 with 
0 < w2 ~ 3, we then find similarly that 

d n ( g , r )  ~< E(w2,n2) max [Pi ,0-  2P~,1 +Pi,2[, (18) 
i=0,1,2 

and the theorem follows from the triangle inequality. [] 

It is clear from this bound that by recursively subdividing and normalising r in either 
parameter direction as in (Floater, 1995), we can approximate it by a spline q (u ,v ) ,  
whose order of approximation is O(h 2nt) in u and O(h 2n2) in v. After each subdivision, 
the greater of the two error bounds (17) and (18) can be used to determine the parameter 
direction in which to subdivide next. The approximant will also be C 1 and G n~-z in 
each isocurve in the u parameter and C j and G n2-1 in each isocurve in the v parameter. 

5. Numerical examples 

In order to express the approximant as a C 1 uniform spline we derived the B6zier form 
for the Hermite interpolant q in (4). It is sufficient to express K0 in Bernstein form and, 
by degree raising each ¢i  to degree n, writing a -- w - 1, and recalling that n = 2m + 1, 
this turns out to be 

Ko(t) = ~-~ (nj ) tJ(1- t)n-Jkj,o, 
j=0 
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where 

~j,0 
m--I 2a + 2a 2 a = forj 

n-j -2  2 i n - 2 i - 2  n • 
f o r 3 - m + l , . . . ,  )/(,) 

0 f o r j = n -  1,n.  

If  the Bernstein coefficients of  Kl(t) and K2(t)  are kj, i and kj,2 respectively, then 
clearly kj,2 = kn-j,o and kj, l = 1 - kj,0 - kj,2. From this, one computes the B6zier 
points of  q. Since the spline curve approximations are C I, one can simply remove the 
common B6zier points where segments meet; the remaining ones are the spline control 
points. The difference between each two adjacent distinct knots is equal and each internal 
knot has multiplicity n - 1. The surface approximations can be put into spline form by 
applying first the conversion from the K i ' s  to Bernstein form in one parameter direction, 
followed by a conversion in the other. 

The approximation scheme was applied to the standard NURBS representation for the 
unit sphere. In this representation there are eight patches of the form r in (12) and (13) 
holds in each case. For example, the surface r representing the first octant has weights 
wl = w2 = t / x / 2  and control points 

(1 ,0 ,0)  (1 ,0 ,1)  ( 0 , 0 , 1 ) ]  
[ p i j ] =  (1 ,1 ,0)  (1 ,1 ,1)  (0 ,0 ,1)  . 

(0 ,1 ,0)  ( 0 , 1 , 1 ) ( 0 , 0 , 1 )  

We subdivided r twice in each variable and computed the tensor-product Hermite inter- 
polant q for each subpatch, using degree nl = n2 = 7. The upper bound in Theorem 4.2 
on the Hausdorff  error was found to be 4 × 10-16. This illustrates how simple the method 
is to implement even for high degrees. 

By piecing together the spline approximations for each of r 's  eight patches, one ob- 
tains a single spline approximation, whose patches are depicted in Fig. 3, for the whole 
unit sphere. Due to symmetry, similar to (Floater, 1995), the continuity of  the whole 
approxmant  is G 6 along all isocurves. Note that each isocurve in Fig. 3 is itself a G 6 
curve approximation of degree seven to a unit circle. 

In practice one would probably choose n = 3 or rt --- 5 since polynomials of high 
degree are slow to display and manipulate. The surface in Fig. 4 shows a bicubic 
approximant (nl = n2 = 3) to a torus of  overall diameter 1, with outer radius 3 /8  
and inner radius 1/8. Here, the approximant has one patch corresponding to each of 
the eight patches of  the torus in standard rational biquadratic representation, i.e., there 
were no subdivisions. The figure shows extra isocurves. The continuity is G 2 in each 
parameter direction and the error bound in this case is 0.00025. 
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Fig. 3. Approximation of sphere. 

Fig. 4. Approximation of toms. 

6. Conclusion 

An O(h 2'~) Hermite interpolant to a rational quadratic B6zier curve has been presented. 
A precise bound on the Hausdorff error has also been derived. The interpolant has very 
desirable properties: it has almost maximum order of contact at the end-points, making 
the spline approximation very smooth; yet it has tangential contact at the mid-point, 
making the error very small. 

For small n such as three or five, the approximation and error bound provide the 
basis for a conversion algorithm, converting analytic curves and surfaces to spline form. 
The interpolant also shows that global O(h 2n) Hermite interpolation for planar curves is 
possible for arbitrarily high n. 

It may be possible to find explicit geometric Hermite interpolants for arbitrary rational 
B6zier curves, based on the ideas discussed here. Firstly, any rational B6zier curve can 
be put in implicit form. Secondly, assuming standard form, the denominator can always 
be written as the sum of 1 and a polynomial which will be small when the weights are 
close to 1. This means that an expansion of the kind in (5) is possible. The difficulty 
would be choosing the right correction terms, analogous to the c~i in (7), in order to 
factorize f (q(t)) or at least sufficiently reduce If (q(t))l to again obtain O(h 2n). 
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