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Abstract 

Given a segment of a conic section in the form of a rational BCzier curve, a quadratic spline 
approximation is constructed and an explicir error bound is derived. The convergence order of 
the error bound is shown to be 0(h4) which is optimal, and the spline curve is both C’ and 
G2. The approximation method is very efficient as it is based on local Hermite interpolation and 
subdivision. The approximation method and error bound are also applied to an important subclass 
of rational biquadratic surfaces which includes the sphere, ellipsoid, torus, cone and cylinder. 
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1. Introduction 

The approximate conversion of rational splines to polynomial splines is an important 
requirement in computer-aided design. It is often necessary to transfer data from one 
design system to another even when they use different representations. Also a number 
of algorithms are difficult to generalise from polynomial splines to rational splines, for 
example lofting and blending, because of the necessity of positive weights. Evaluation 
and intersection algorithms are less efficient for rational splines. So even though NURBS 
have been described as the “geometry standard” for curve and surface modelling, it is 
nevertheless worthwhile investigating how well one can approximate tonics and quadrics 
by polynomial splines. 

A number of papers have been written on the approximation of rational curves and 
surfaces by non-rational ones (Bardis and Patrikalakis, 1989; Hoschek, 1987; Hoschek 
and Schneider, 1990; Patrikalakis, 1989; Sederberg and Kakimoto, 1991). Though all 
of these have some strength of their own, none of them provide an error bound having 
optimal order of convergence. Bardis and Patrikalakis (1989) point out the lack of 
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bounds for rationals, as do Filip et al. (1986). Sederberg and Kakimoto (1991) have 
made some progress by providing an error bound for their “moving control point” 
approximation but this is unfortunately not optimal. 

Without an optimal error bound, the approximation will inevitably contain more data 
than what is actually necessary for the approximation to be within the given tolerance. 
In the worse situation where no error bound is available, one would simply have to 
guess the required number of subdivisions, if employing a Hermite approximation, or 
the number of interpolation points, if using a global spline approximation. The reason 
for the difficulty with rationals is that expressions for derivatives are complicated by 
the denominator. Yet error bounds for spline approximation normally require bounds on 
some derivatives of the curve or surface in question. 

In classical spline approximation, the optimal approximation order when approximat- 
ing a curve r by a spline curve q with degree n is 0( h”+‘). That is to say, if h is 
the maximum length of the parameter interval, and the correct approximation method is 
chosen, there exists some constant K for which 

m:x fq(t) - r(t)1 6 Kh”+‘. (1) 

The power of h cannot be increased. Put in simple terms, each time h is halved, the new 
error is roughly 2-(“+‘) times the previous one. For example, both C’ cubic Hermite 
interpolation and, provided care is taken near the end points of the parameter domain, 
C* cubic spline interpolation are 0( h4) as explained by de Boor ( 1978). In the cubic 
Hermite case, K depends on the fourth derivative of r. 

More recently, investigations into so called parametric or geomettic approximation 
suggest that if r is a planar curve, then an approximation order of O(h*“) is both 
attainable and optimal, at least under some restrictions on r such as convexity. By 
considering the approximation of a circular segment in a neighbourhood of a point, 
Lyche and Morken ( 1994) have derived a local polynomial expansion of order 0( h2n) 
when n is odd. Recently, the author (Floater, 1994) has constructed global Hermite 
interpolations for conic sections with 0( h2n) convergence. In parametric approximation 
one exploits the spare degrees of freedom which become available when one weakens 
the definition of the error to be a true measure of distance between the curves. For 
example, one might try to bound the distance of q from r: 

my min [q(s) - r(t) 1 < Kh*“. (2) s 

Explicit error bounds for parametric approximation have not been derived at all due to 
the nonlinearity involved. In (de Boor et al., 1987) it was shown that parametric cubic 
Hermite approximation of planar curves, when it is possible, is 0( h6). But no explicit 
expression for K is available, although it is known to depend on the sixth derivative 
of r. The same problem is true of the 0( h4) approximation due to Schaback ( 1989). 

The approximation of circular arcs by cubic Btzier segments has been analysed by 
Dokken et al. (1990). Their approach is to represent the unit circle in its implicit 
form X*(t) + y*(t) = 1. One then argues that if x2(t) + y*(t) - 1 is small then the 
approximation is good. By this method they obtained an O( h6) error, smaller than that 
of de Boor et al. in this special case. The implicit error bound leads to an explicit one 
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when the approximation is close. Using a similar method, Morken (1991) has since 
constructed various fourth-order approximations, i.e. 0( h4) when approximating a circle 
by quadratic segments. 

So where does this leave the spline approximation of a rational polynomial curve r? 
Whether one carries out a classical or a parametric approximation, we do not have any 
error bounds in the usual sense. Although bounds have been derived for first derivatives 
(Floater, 1992ab) it is doubtful whether these can be generalised to higher derivatives 
in a useful way. 

Somehow, one feels that, rather than try to bound derivatives, it ought to be possible 
to exploit the special form of a rational polynomial in order to construct a good error 
bound with respect to a particular approximation method. Knowing already what the 
approximation order is for general curves, the goal should be to construct an error bound 
having the same order of convergence. The bound does not need to be in the form Khk. 
For example, in the parametric case, if we can show that 

my Tin Ids) - r(t)1 < e(h), 

and that there exists K for which e(h) < Kh *“, then we will have an excellent method 
for approximating rationals. One should still try to find an e(h) which is as small as 
possible among those which have optimal convergence order. 

Sederberg and Kakimoto ( 1991) give an upper bound on the error q(t) - r( t) of 
their “moving control point” polynomial approximation q. This method is good in that 
it applies to any degree, but in the case when q is quadratic, the error is only 0( h*) 
which is neither optimal in the sense of ( 1) nor of (2). This is borne out by the slow 
convergence shown in the numerical results at the end of that paper. 

In the present paper we attack the problem in a different way. A restricted yet 
important class of rational polynomials, namely conic sections and surfaces formed 
from them, for which an explicit optimal error bound can be constructed is studied. 
We approximate a rational quadratic BCzier curve r by geometric quadratic Hermite 
interpolation and derive an error bound having order of convergence 0( h4). This is 
optimal since we know from the work of Degen ( 1993) that this type of approximation 
is 0( h4), agreeing with (2). Moreover, the numerical examples indicate that the error 
bound is sharp in the limit, i.e. the difference between the error and the error bound 
becomes negligible in relation to the size of the error. Thus the algorithm we present here 
is guaranteed to produce no more data than is absolutely necessary when approximating 
tonics by quadratic splines. 

Since r is a rational Btzier curve, the approximation is very simple. One starts by 
approximating r by that quadratic Bezier curve qO having the same three control points. 
If the error is small enough one stops here. Otherwise r is subdivided at the mid 
point, each subcurve is normalised and then approximated by a corresponding Btzier 
curve in the same way as before, resulting in a spline approximation q,. The process 
continues- subdividing and normalising- until the error between q, and r is small 
enough. By subdividing in this non-linear way the spline approximation turns out to be 
both C’ and C*. Thus this method yields both optimal convergence order and optimal 
smoothness. This also means that q, is a special case of the G* spline developed by 
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Schaback (1989). Normally, to construct a G2 quadratic spline through an arbitrary 
sequence of points requires the solution of a non-linear system; a shooting technique is 
proposed in (Schaback, 1989). 

An upper bound on the maximum distance of 4, from r in each interval is found by 
using an explicit parametrisation s(t) for which the error between q,(s(t)) and r(t) 
can easily be computed; see Section 2. To be precise, a number E, is found such that 

m;x”ff’n 14,(s) - r(t)1 6 er, 

and E, is O(2-4r) where r is the level of subdivision. 
Notice that 0( 2-kr) implies 0( hk). Indeed, no matter where the subdivision points 

are chosen, there are 2’ parameter intervals after r levels of subdivision. So let hi,, be 
the length of the ith interval and h, = maxi hi,,. Then 

ho = ht,iJ = 5 hi,, 6 2 h, = 2’hr. 
i=l i=l 

If the approximation error, 6,. say, is O(2-kr> then there exists a constant K > 0 for 
which 6, 6 2-k’K. Therefore 

and this means that S, is 0( h:). 
Thus it follows that er above is also 0( h4>, where h is the maximum length of 

parameter intervals of r, with respect to the original parametrisation. The subdivision 
scheme is described formally in Section 3 and it is proved in Section 4 that er is 
O(2-4r) as r -+ co. 

In Section 5 the question of continuity is addressed. It is shown that, due to the 
construction, the spline approximation has both C’ and G* continuity, even though it 
only has contact of order 1 with the rational curve at the subdivision points. This must 
be a special characteristic of conic sections. One would normally expect to achieve at 
most G’ continuity when approximating locally with quadratic splines - there are only 
six degrees of freedom in a quadratic Bezier segment. The extra order of continuity is 
also a consequence of the way the subdivision scheme is chosen; alternating between 
subdivision at mid points and normalising. The scheme exploits the natural symmetry 
of the rational curve in normal form. In the special case when the rational curve is a 
circular arc, the subdivision scheme corresponds precisely to uniform subdivision with 
respect to angle or arc length. 

In Section 6 it is explained how, with very little extra effort, the approximation method 
can also be applied to a large class of rational biquadratic surfaces and an optimal error 
bound is again derived. One obtains a G2 biquadratic spline approximation which is 
fourth order accurate in each parameter direction. Numerical examples are presented in 
Section 7. 



M. Floater/Computer Aided Geometric Design 12 (1995) 617-637 621 

(PO+ P,W 

Fig. 1. r in the cases O<W<I, w = I and w > 1. 

2. The error bound 

We will consider the approximation of the rational quadratic BCzier curve 

r(t) = 
Bo(t)po f &(t)wp, + &(t)P* 

Bo(t> + Bl(l)W + B2(f) 
(3) 

where po, p,, p2 E W2 are the control points, w E IR is the weight associated with pl, 
assumed positive, Bo( t) = (1 - t)2, Bl(t) = 2( 1 - t)t, B2(t) = t2, are the Bernstein 
basis functions, and t is in the range [0, 11, The most general form of a rational curve 
of degree two is 

Bo(t)wopo + Bi(t)wip, + &(t)w2p2 

Bowo(t) + Bi(t)wi + &(t)w2 

for arbitrary wg, wi, w2 > 0 but the so-called normal form (3) can always be arranged 
by a scaling and reparametrisation; see (Piegl and Tiller, 1987). It is shown in (Faux 
and Pratt, 1979) that in normal form the size of w determines the type of conic section 
r represents. r is an ellipse when w < 1, a parabola when w = 1 and a hyperbola when 
w > 1; see Fig. 1. The quantity a = w - 1 will play an important role in the analysis 
which follows. 

We shall be concerned with the maximum error lq(s) - r(t) 1 where q is the Bezier 
curve 

q(s) = Bo(~)P,, + BI(~)P, + B~(s)P, 

with s E [0, 11. Curves r with w < 1 and q are shown in Fig. 2. The points r( l/2) 
and q( l/2), known as the shoulder points of r and q respectively, both lie on the 
straight line between (p. + p2)/2 and pl. One might expect that )q( t) - r(t) 1 would 
achieve its maximum when t = l/2 but a calculation reveals that this is in general 
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Fig. 2. The curves r and q. 

not the case. Thus we dismiss the usual type of approximation q(t) M r(t) and turn 
instead to a parametric approximation. Indeed we study a reparametrisation s(t) for 
which lq(s(t)) - r(t)1 d oes achieve its maximum at t = s = l/2. We define s(t) by 
demanding that the vector q( s( t) ) - r(t) is parallel with p. - 2p, + p2. 

Proposition2.1. Lets=t(l+a(l-t))/(1+2a(l-t)t) wherea=w-1 >-1. Then 

a(2 + a) ( 1 - t)V 
q(s)-r(t)= (I+2u(l_t)t)2(PO-2P,+P2). 

Proof. Sinces=t(l+u(l-t))/(l+uBl(t)),and l-s= (l-t)(l+ut)/(l+uB~(t)), 
it follows that 

Bo(s)=Bo(t)(l+ut)2/(1+uBl(t))2, 

Bl(.s) =B1(f)(l +ut)(l +a(1 - t))/(l +uBl(t))2, 

B2(S)=B2(t)(l+u(l-t))2/(1+uBl(t))2. 

Now 

r(t) = &)(t)po + (1 + a)Bl(f)Pl + B2(t)p2 

1 +u&(t) 
, 

so that 
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(1 +aB~(t))~(q(s) -r(t)) 
={(l +ut)2- (1 +aBl(r)))Bo(r)pa 

+{(l ??tat)(l+u(l -t)) - (1 +a)(1 +aB,(t))}&(t)p, 

+ ((1 +a(1 - tH2 - (1 +aBl(f))}B2(t)P2 

=u(2+u)t~Bo(t)~o-u(2+u)(l-t)tBl(t)p,+a(2+a)(l-~)2B2(~)P~ 

=u(2+u)(l -t)2t2(po-2p, +p2), 

as claimed. 0 

The validity of the reparametrisation can be verified by noticing that both s and 1 - s 
are positive whenever 0 < t < 1 because a > -1. Also the denominator is always 
positive. The first derivative is found to be 

S’(t)=(1+u(l-2t(l-t)))/(l+2u(l-t)t)2, 

and so s’(t) > 0. Note that the vectors q( s( t) ) - r(t) and p. - 2p, + p2 have the same 
direction when a > 0 and the opposite when a < 0. The magnitude of q( s( t) ) - r(t) 
is bounded in the following corollary. 

Corollary 2.2. With s = s(t) us defined in Proposition 2.1, 

for all t E [O, 11. 

Proof. By Proposition 2.1 we find that 

lq(s) _ r(t)l = Ikw+M(t) 
4(1 +uB,(t))2 IPO - 2P, + P2l. 

If 4(t) = Bt(t)/(l + uBi(t)) then 4’(t) = Bi(t)/(l + uB~(t))~ and so, since 
B{ ( l/2) = 0, 4 takes its maximum in [ 0, 1 ] at t = l/2 . Therefore lq( s) - r(f) I takes 
its maximum value when t = s = l/2. Since Bt (l/2) = l/2 and c$( l/2) = l/(2 + a) 
the corollary is proven. 0 

Remark. An alternative way of deriving the error bound is to affinely map r into either 
a circular arc or an equilateral hyperbola X. x can be parametrised in terms of either the 
trigonometric or hyperbolic functions respectively: x(t) = p( c( t) , s( t> >. In these cases 
the error bound in the corollary is the error between x and its parabolic approximation 
along the x axis and is found after some algebra to be 

E=; 
1 

c(h) + - 
c(h) 

-2 
> 

= !h4+O(h6), 
8 

where h is half the length of the parameter interval spanning X. Since this error bound is 
a ratio, it is invariant under the affine mapping and so it is also valid for r. For example, 
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when r is an elliptic arc, x becomes a circular arc. If 8 is the angle subtended by the 
circular arc, h = 28 and we find that 

showing that the error is 0(e4). 

3. Approximation by subdivision 

Corollary 2.2 gives an upper bound on the error when approximating r by a sin- 
gle BCzier segment q which from now one will be referred to as q,,: Indeed it was 
demonstrated that d( q,,, r) < EO where 

is the maximum distance of q. from r and 

e. = IU]~P~ - 2p, + ~,1/4(2 + a). 

One can use this bound to obtain an arbitrarily close spline approximation to r in the 
form of a sequence of BCzier segments by recursive binary subdivision. By subdividing 
r at the right points we will see that the segments join with order of continuity C’ and 
G*. Indeed the subdivision scheme consists of alternating between subdividing at mid 
points and normalising the new segments. The term G* refers to geometric continuity 
of order 2. In this paper, a parametric curve will be said to be G* if there exists a 
reparametrisation for which it is C*. 

r is subdivided by the rational de Casteljau algorithm; see (Farin, 1988). Letting ri 
be the subcurve r]e(,<i,2 and r2 be the subcurve r]i,2~,~i one finds 

I.1 (t) = r( t/2) = 
Bo(t)po,, + ~l(~)~Pl,l + ~*(~)~P2,1 

Be(t) + h(t)u + B*(t)u 

and 

r*(r) =r((l +t)/2) = 
BO(f)uP,,, + Bl (tbP3,1 + B2(t)P4,1 

Bo(t)u + h(t)u + B*(f) 

fortE [O,l] whereu=(l+w)/2,and 

PO.1 = PO- 

P1.1=(Po+wPl)Iu+wL 

p*,1 = (PO + 2WP, + P,)/Vl + w>, 

P3,l = (WPl + P,)l(l + w), 

P4,l = P2i 

see Fig. 3. 
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Fig. 3. The first subdivision of r (with w < 1) 

Reparameterising rl and r2 to put them in normal form, we obtain 

?l(r) = rl(t/(J;(l - t) + t)) = 
Bo(r)po,, + h(t)w,,, + B2(l)P2,1 

Be(t) + BI (t)w + B2(t) 

and 

f2(t) = rz(JSt/(l -t+ 42)) = 
i&(t)& + &(+‘l&~ + B2(f)p4,1 

&J(t) + Bl(f)Wl + B2(f) 

where wI = fi = dm. If we approximate il and f2 by 

q,,,(s) = Bo(s)Po,, + &(s)p1,, + &WP,,, 

and 

q2,, (S) = BO(s)p,,, + Bl (s)&,, + B2(s)p4,, 

respectively, we can apply Corollary 2.2 again and get d(q,,,,.i~) < EI.I, d(q2,1$ j2) s 
~2, ,, where 

EI,I = I~IP~,, -2~,,, +P~,,I/~(~+w)~ 

~2.1 = 141P,,, ,- 2P,,, +P4,#(2+ al), 

and al = WI - 1. It is a consequence of the above bounds that the approximation q, 
consisting of the two segments q,,, and q2,, is such that d(q,,r) < EI =~~x(EI,I.E~,J). 

Subdivision algorithm. By continuing to subdivide at the midpoint of each new nor- 
malised segment we obtain the subdivision scheme: 

(i) Set pi,o = pi for i = 0, 1,2 and wo = w. 
(ii) Forr=1,2,... let, for i = 0,. . ,2’-’ - 1, 
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p4i,r = P2i,r- 1) 

P4i+l,r = (P2i,r--l + Wr-1P2i+l,r-l)l(1 + wr-l)T 

P4if2,r = (P2i,r--l + 2Wr-1P2i+l,r-_l +P2i+2,r-1)/2(1 + wr-1)7 

P4if3,r = (Wr-1P2i+l,r-l + P2i+2,r-l)l(l + wr-l), 

P4i+4,r = P2if2,r- I. 

and let w, = J<1+ W-1)/2. 

The rth approximation qr( s) , s E [O, 1 ] to r is the piecewise quadratic 

4,(S) = BO(S)P2i,r + B1(5)P2i+l,r + B2(5)P2i+2,r 

wheret=2’s-i,forsE [i/2’,(i+1)/2’],i=O,...,2’-1. 

4. Order of approximation 

In order to study the convergence of the error bound, we define a, = wr - 1 and 

Er = 4(d:‘ar) i=oEy_, IP2i,r - 2p2i+l,r + p2i+2,rl. 

(4) 

Due to the construction of qr and Corollary 2.2, we have that d(q,, r) < cr. In the 
following theorem it is shown that E,. --+ 0 as r + 00 and the convergence is fourth 
order. This of course implies that d( qr, r) also has fourth-order convergence but this 
follows from a theorem in (Degen, 1993) since qr is a quadratic Hermite interpolation 
in each segment. The theorem actually looks a lot more complicated than it really is. 
Essentially the two significant components la,] and maxi=c..,2r-i IP2i,r_2P2i+,,r+P2i+2,rl 
are both 0(2-2r>, i.e. O( h2>. 

The quantity ]a,1 is in a sense a measure of the “rationality” of each subcurve of r 
after r subdivision levels. Indeed, a, = wr - 1 and if a, were 0 (equivalently a were 0), 
r would be a parabola. Thus it is not surprising that if ]a,] is O( h2), as shown in the 
theorem, that q, approaches r as r increases-q, can be regarded as a rational curve 
with a, = 0. The first part of the theorem shows in fact that the “rationality” of each 
curve segment gets smaller at a rate of 0( h2). This turns out to be quite easy to prove 
because a, can be solved explicitly. 

Meanwhile the quantity ]p2i,r - 2p2i+,,r + p2i+2,r], is clearly a second-order difference 
and one would expect this to be O( h2). Now, had r been non-rational (a = a, = 0 for 
all r), it would have been almost trivial to prove this. One could either use the fact that 
2(po - 2p, + p2) were precisely equal to the constant second derivative r”(t) or from 
the subdivision scheme (4), one would obtain 

P4i.r - 2P4i+l,r + P4i+2,r = P4i+2,r - 2P4i+3,r + P4i+4,r 

= i(P*i.r--l - 2P2i+l,r-1 + P2i+2,r-I). 
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But since a, # 0, one finds instead equation (6) below. Even so it is relatively 
straightforward to demonstrate that LY, is 0(2- (2-6)r) for any small 8. Most of the 
complications arise when achieving 0( 2-2r). 

Theorem 4.1. The error bound .q is 0(2-4’) as r + 00. 

Proof. The proof is in two parts. We show that both (i) Ia,1 is 0(2-2’> and (ii) 

maxi I&r - 2P2i+l ,r + P2i+2,r l/(2 + a,) is O(2-2r) as r -+ 00. 
(i) The recursive equation for w, resembles the half angle formulas for cos and 

cash, namely 

cos(x/2) = J(cosx + 1)/2, and cosh(x/2) = (coshx + 1)/2. 

From this observation we can solve w, explicitly. If wo < 1 we find 

w, =cos(2_‘cos-‘(WC))), 

and when wo > 1, 

w, = cosh(2-‘cash-‘(wo)), 

Now, taking the case wu < 1, if we let 0 = cos-1 ( WO), we find by expanding cos in its 
power series that 

e4 e6 22rar=22r~wr_1)=_!!?+ ---.... 
. 4! 22r 6! 24’ 

Therefore 22’a, is bounded and indeed 

22’a, + -@OS-‘(wo>>2/2. 

A similar argument shows that 22’a, is also bounded when wo > 1 and then 

22’a, ---) (cash-‘( ~~))~/2. 

Thus la,1 is 0(2-2r) as claimed. 
(ii) To improve clarity, set 

a, = ,_Om~_, IP2i-2,r - 2P2i-l,r + P2i,rl/t2 + aF), 3 3 

&.= max i=. ,,,,, 2r+,_, IPi+l,r - Pi,rl/(2 + ar). 

The task is to show that cy, is 0(2-2r). From the subdivision scheme (4) we find that 
after some manipulation, 

P4i,r - 2P4i+l,r + P4i+2,r 

= P2i,r-1 - 2P2i+1,r-1 + P2i+2,r-1 ar-l(P2i,r-1 - P2i+l,r-1) 

32 + G-1) 
+ 

(2+ar-l) ’ 
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and 

P4i+2,r - 2P4i+3,r + P4if4,r 

= P2i,r-1 - 2P2i+l,r-1 + P2i+2,r-1 + ‘r-l(P2i+2,r-l - P2i+l,r-1) 

2(2 + a,-I > (2 + G-1 > 

Taking maxima over each side and dividing by (2 + a,), we then have 

a,-1 
ar -S 2(2+a,) 

+ l&-l P-1 
(2+a,) ’ 

(6) 

It turns out that lu,_i I&i becomes negligible relative to a,._1 in the limit. Further 
algebra reveals that 

P4i+l,r - P4i,r = 
(l + u~-l)(P2i+l,r-l - PZi,r-1) 

(2+&l) ’ 

and 

P4if2,r - P4ifl ,r = 
P2i+2,r- 1 - P2i,r- 1 

2(2+&-l) 

= P2i+2,r-1 - P2i+l,r-1 + P2i+l,r-1 - P2i,r-1 

2(2+&-l) 2(2+&-l) . 

With the other two cases being symmetries of these, taking the maximum over i of each 
side and dividing by (2 + a,) implies 

Pr 6 l ;~;;i’PA 1 

and in view of the fact that a, -+ 0 it is clear that & is 0(2-(‘-@‘) for any 6 > 0. To 
obtain the sharper 0( 2-‘), let & = 2’/3, and take logs. Using the fact that log(x) 6 
x - 1 for x > 0, one finds 

log(&) <log(2;;;;i’) +log(kl) 

< 2’ur-1’ - ur + log(q5 \ 
2 + a, 

r _l) 

< 31%11 + log(dJ-I)? 

since Ia,\ < lu,_il follows from (4) and 2+u, > 1. Further, because [a,1 < 2-2’K, for 
some K, 

los(b> < 4K + log(+oo), 

i.e. 

which means 

Pr < 2-‘e4KP0, 

and therefore pr is 0(2-‘). 
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Now we attack (6) in a similar way. Combining the convergence of & with a, we 
see that the product larlPr must be 0(2-3r). In other words there exists a constant L 
for which 23rlu,l& < L. Therefore if we let yr = 22r~r, we obtain 

2 

Yr G (2+a,) 
(rr_t + 2-‘+%). 

As previously the key to showing that yr is bounded is to take logs: 

lq(yr) 6 log & ( 1 + log(y,-I + 22’f2L) 
r 

< I4 , 2fa + log(y,-I + 22’f2L). 
i- 

Now we have log(x) 6 x - 1 and moreover, since log is concave, log(a + b) < 
log(a) + blog’(u) for a, b > 0. Then log(u + b) 6 log(u) + b 6 1 log(u)/ + b when 
a 3 1 and log(a + b) 6 u + b - 1 6 b < I log(u) 1 + b when a < 1. In either case, 
I &(a + b) / < ( log(a) I + 6. Applying this estimate, one finds 

I WYr) I 6 I4 + I log(yr-I ) l + 2-‘+2L, 
and so 

log(%) < / log(yr) I < K/3 + I log(yo) j + 4L. 

Thus 

7tr < e K/3+1 log(Y 

and therefore 

Ly < 2-*reK/3+1 b(%)l+4~ 
r\ 

Hence ay, is 0(2-2”) as claimed. 0 

5. Order of continuity 

Since the rth approximation q, touches r tangentially at the points of subdivision 

PO,P PZJ) P4p . . 3 P2’+1 p it is clear that q, and r meet with order of contact 1 and that 
q,. is itself a Gt curve. In the following theorem it is shown that the order of continuity 
of q, is in fact both C’ and G2. 

Recall that sufficient conditions for the two Bezier curves Ba(u)ae + BI (u)al + 
B2(u)a2 and Bo(u)bo+Bl(u)b,+B2(u)b:! tojoin withC’ andG2 continuityat u= 1 
and u = 0 respectively are q = ba, al - 2~2 + bl = 0, and b2 - ua = A(bl - al) for 
some scalar A. Thus when r = 1, it can be seen from Fig. 3 that the two subcurves of 
q, join with C’ and G2 continuity. Mathematically, from the definition (4) of the pt., , 
one finds 

PI.1 -a%,, +1)3,1 = 0 
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P4,l - PO,l = (1 f wo) (P3.1 - Pl,l>’ 

In other words, the vectors p 2,1 - p,,, and p3,, - p2,i are equal (in both length and 
direction) while the vectors p3,t - pt,, and p 4,1 - po,t are parallel (the ratio of their 
lengths depends on the weight wa). By a similar argument, after the next subdivision 
r = 2, the first two of the four subcurves of q2 join with C’ and G2 continuity as do the 
last two. The order of continuity between the middle two subcurves on the other hand 
follows from the continuity of the two subcurves of q,. 

Theorem 5.1. The curve q,. is both C’ and G2. 

Proof. We prove, by induction on r, that for all r and all i, 

P2i+l,r - 2P2i+2,r + P2i+3,r = O9 (7) 

and 

P2i+4,r - P2i.r = ( l + wr-l) (P2i+3,r - P2i+l,r) = 2wF(P2i+3,r - P’Li+l,r)’ (8) 

Let r 2 2 and assume that these identities hold for I - 1. 
To prove (7), for each i E (0,. . . ,2’-’ - 1) there are two cases. From the subdivision 

scheme (4) we find 

P4i+l ,r - 2P4i+2,r + P4if3,r = O 

and 

wr-l P4i+3,r - 2P4i+4,r + P4i+5,r = ( 1 + w _, 1 (P2i+l,r-I - 2P2i+2.r-l + P2i+3.r-1) = O 
r 

by the induction hypothesis. 
To prove (8) there are again two cases. In the first we find 

P4i+4,r - P4i,r = ( ’ + wr-l ) (P4if3,r - P4i+l,r) 

directly from the subdivision scheme. In the second, by the induction hypothesis, 
pzi+J,r_t - p2+t = (1 + Wr-2)(P2i+3,rTl - ~2i+l,~-l). This implies that 

p4i+6,r - p4i+2,r = 2wr-1 ::,‘_t wr-2) (P4i+5,r - P4if3.r) 

= ( l + Wr-1) (P4i+S,r - P4i+3,r) 3 

as required. 
When r = 1, 

P~,~ -2p2,, +~3,~ =O and ~4,~ -PO,I = (1 +WO)(P~J -P~.A 

which completes the proof. Cl 
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The above theorem means that we can express the rth approximation qr as a uniform 
quadratic spline. Its control points are 

P0.V PI ,r> P3,v P5.e ‘.., P2”l_l,r, P2r+l,r 

and its knot vector is O,O, l/2’, 2/2’, . . . , (2’ - 1)/2’, 1,l. 
Note that the C’ and G2 continuity of the approximant depend critically on the fact 

that r is subdivided in every interval simultaneously. If one subdivided adaptively, the 
approximant would in general only be G’. 

Remark. Note also that the G* continuity can be demonstrated alternatively by affinely 
mapping, at each level of subdivision, each pair of subcurves into a circular arc or 
equilateral hyperbola. Since then the two approximating curves are symmetries of each 
other, they share the same curvature at their contact point. The G2 continuity then 
follows because curvature is an affinely invariant quantity. 

6. Approximation of surfaces 

Using the same error bound and essentially the same subdivision scheme as developed 
for curves one can obtain a fourth-order approximation and error bound for members of 
an important subclass of rational tensor-product biquadratic Btzier surfaces. In fact, we 
can construct a biquadratic spline approximation to the parametric surface 

which is both fourth-order accurate in each parameter direction and C’ and G2 provided 
only that 

WOOW;j = WiOWOj. (9) 

No restrictions whatsoever are put on the control points pij. A surface is said to be G2 

if it can be reparametrised so as to be C2. 
Without demanding condition (9), the bound in (12) would not be possible. Fur- 

thermore the high-order of continuity (both C’ and G2) would be lost as equations 
( 13) and ( 14) would no longer be valid. There does not appear to be any easy way 
of improving on this. With condition (9), r has the property that every isoparametric 
curve in u (a surface curve of the form u = const) is a rational quadratic curve with 
the same three weights, namely woo, wto, ~20, irrespectively of u. For if one fixes u to 
be some 6, one can write (after multiplying throughout by woo) 

The same is true, of course, of isoparametric curves in the u variable. There is an 
interesting analogy between (9) and the condition for a tensor-product BCzier surface 
to be trunslational, namely poo + pij = pi0 + poj, as defined in (Farin, 1988). 
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Among surfaces satisfying (9) are those constructed by revolving any conic section 
(representable by a rational Btzier curve) in the xz plane about the z axis, through 
an angle of less than 180 degrees. For example a sphere is typically represented by 8 
patches of this kind while the torus can be represented by 16 of them; see (Piegl and 
Tiller, 1987). Due to the symmetry of the patches the approximation method will yield 
an approximant to the whole sphere or torus which is C’ and G2. One must make sure 
that, in each parameter direction, the number of subdivisions in each patch is constant. 
Patches of cylinders, cones, elliptic cones and ellipsoids can also be expressed in the 
form of r(u, u) satisfying (9). Note that in all of these particular cases there is in 
addition some kind of symmetry among the control points but this is not a requirement 
for the approximation method described here. 

Given that the weights are in the form (9) it is straightforward to reparametrise r if 
necessary in such a way that 

1 1 
[Wij] = WI Wy!t2 Wl 1 

[ 1 1 w2 1 

(the indices go from 0 to 2). We will now approximate r( U, u) by 

2 2 

q(Sf t) = 7, x Bi(s1Bjtt)Pi.j 
i=O j=O 

where 

s=u(l+a1(1-U))/(l+ar&(u)), t=u(l+az(l -u))/(l+a2&(u)), 

and al = wt - 1, u2 = w2 - 1. To compute an upper bound on 

d(q,r) =c~~~~~~(~~~~alq(~,t) -~(u,u)l, with a= [O,ll x [O,ll, 

we define the intermediate surface 

g(u, t) = CfLa C;=fj Bi(“)Bj(t)wiOPij 

Cf* Bi(u>wiO 

which is rational in u but non-rational in t. Observe now that 

q(S,t) -g(uvt) =kBj(t) kBiCs)Pij - 

xi* Bi C”> wiOPij 

j=O 1 i=O Et* Bi(u)wiO I9 
and, from (9), 

g(u, t) - du, u) 

C;a Bj (U) WjPij 

C;a Bj (U>wOj I/ Bi(u)wio. 
i=O 
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Now the two expressions in the square brackets are completely analogous to the dif- 
ference q(s) - r(t) considered for curves in Corollary 2.2. Appealing to Corollary 2.2 
and by the convex hull property of non-rational and rational Btzier curves respectively 
it follows that 

Ids, t) - gcu> t) I < bll max 4(2+~1) j=O,1,2 
IPOj - 2P1j + P2jl 

and 

Hence 

d(q, r) 6 lq(s, t> - r(u, u) I 
< bll 
’ 4( 2 + UI ) j=O,t,2 max IPOJ - 2P,,j + P2jI 

la21 
max + 4(2 + u2) i=o,1,2 

IPiO - 2Pi, + Pi2 I. 

(11) 

(12) 

It is clear from this that by recursively subdividing and normalising r in each param- 
eter direction in an analogous way to (4), the convergence order of the bound is four 
in each direction. After each subdivision one can compute each of the bounds ( 10) and 
( 11) separately. The greater of the two error bounds can then be used to determine 
the parameter direction in which to subdivide next. Note that for a surface such as a 
cylinder one would only need to subdivide in one direction. 

The approximant will also be C’ and G 2. Let us illustrate the proof of continuity 
by showing that after subdividing r(u, o) once at u = l/2, the approximant q(s, t), 
consisting of the two patches q, and q2, is C’ and G2 along the edge s = u = l/2. 

The goal then is to prove that the two patches 

2 2 2 2 

41 (S, t) = F, x Bi(s)Bj(f)qijt 42(S, t) = xx Bi(s)Bj(t)tZ2+i,j9 

join 

I=0 ,j=O i=O j=O 

with C’ and G2 continuity at s = 1 and s = 0 respectively, where 

%.t =PO,.jJ 

‘II,, = (PO,,, + wlP,,j)l(l + wl) 1 

r12.j = (PO,,j + 2wlPl,.j + P2,.j)/2( ’ + w1 >t 

‘13,J = CwlPl,.j +PZ,j)l(l + w1)3 

44,.j = P2,,, . 

Similar to the curve case one finds that 

Qt ..I - 2q2,j + 43,j = ‘3 (13) 
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%,,j - 40,j = C1 + w1)(43,j - 41,j). (14) 

The C’ continuity is a consequence of ( 13) and G2 continuity follows from both (13) 
and ( 14) where the important point is that the factor (1 + WI) is independent of j. 
Indeed C’ continuity is a consequence of the fact that the first derivatives with respect 
to s of q, and q2 are equal at s = 1 and s = 0 respectively; 

$I*( 0,t) =2eBj(f)(qj,j -q*,j) =2~Bj(f)(q2,j-41,j) = i41(1*t)’ 
j=O j=O 

The derivatives a/c% and d*/ds& also agree since both patches are C’ in t along the 
edge. 

Now consider G* continuity. Following Gregory (1989), it is sufficient to find a C* 
mapping 4p : R -+ Et, defined in a neighbourhood of s = 0, with ~(0) = 1 and q’(O) > 0 
for which all partial derivatives in s up to order two of the patches q, (p(s), t) and 
q2 (s, t) are equal at s = 0. It is not necessary to look at derivatives involving t. This is 
due to the fact that the patches are C* along the adjoining edge and that the direction of 
the s variable in the parameter plane is transversal to the knot line; continuity of cross 
derivatives comes automatically from differentiation. Let p(s) = 1 + s - uts* where 
at = WI - 1. By the chain rule one finds 

-$$dSLf) = Cl-2ula)~q,(yo,t), 

and 

d* a* j-p W)J) = -2ar$zl((D,1) + (1 -22alsFj--gq,(pJ). 

Then, from (13), 

2 2 

~q*(O,r)=2CBj(r)(qz,j_q*,j) =2CBj(t)(@j-41.j) =$41(p(0)'t)' 

j=O j=O 

and, applying both (13) and (14), 

2 

~q*(0,f)=2CB,(t)(R.j-243,j+%,j) 

j=O 

2 2 

=-4U~CB,(t)(42,j-4~,j)+2CBj(t)(40,j-2ql,j+42..i) 

.i=o j=O 

Therefore q1 and q2 join with G* continuity. Using an approach similar to that in 
Theorem 5.1, one easily extends the above proof to cover any depth of subdivision in 
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Table I 
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Number of patches El 352 

1x1 1.34 x 10-I 9.70 x 10-2 
2x2 6.49 x 1O-3 5.84 x 1O-3 
4x4 3.80 x 1O-4 3.69 x 1O-4 
8x8 2.33 x 1O-5 2.31 x lo-’ 

16 x 16 1.45 x 10-h 1.45 x 10-6 
32 x 32 9.07 x 10-S 9.07 x 10-g 

either parameter. Also at a point where s and t knot lines meet, the approximant is G* 
since each adjacent pair of the four neighbouring patches join with G2 continuity. This 
is explained in (Gregory, 1989). The same remark is valid, for example, at the poles of 
the sphere considered in the next section. 

7. Numerical examples 

The approximation scheme was applied to an octant of a sphere with unit radius. r 

has weights wt = w2 = l/a and control points 

[P,jl = Cl, lT”> (1,1>1) C”,03 l) . 
[ 

(l,O,O) Cl,& 1) (O,O, 1) 

(O,l,O> (O,l, 1) (O,O, 1) 1 
At each level of subdivision both the error bound Et given by (12) and the actual 
maximum error E2 = dm - 1, found by sampling each patch of the approx- 
imant at 20 x 20 points, are shown in Table 1. Note that El approaches E2 in the limit, 
suggesting that the error bound is sharp. Note also that the error at each level is roughly 
a sixteenth of the previous one. 

Fig. 4 shows the boundaries of the 16 x 8 patches of a biquadratic approximant of a 
whole sphere of radius 1. r is a rational biquadratic spline with 4 x 2 patches and there 
are two levels of subdivision in each direction. The error bound is 3.80 x 10e4; see also 
Table 1. Fig. 5 shows the boundaries of the 16 x 16 patches of a biquadratic approximant 
of a whole torus of outer radius 3 and inner radius 1. r is a rational biquadratic spline 
with 4 x 4 patches and there are again two levels of subdivision in each direction. The 
error bound is 9.44 x 10P4. 

8. Conclusions 

A method for approximating conic sections by quadratic splines with continuous 
curvature has been presented. Moreover an explicit error bound is derived and this can 
be used to determine how many subdivisions are required in order to satisfy a given 
tolerance. The main advantages of this method and the error bound are: 
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Fig. 4. Approximation of a sphere. 

Fig. 5. Approximation of a torus. 

(i) The error bound is 0(h4) which is optimal, 
(ii) The spline approximation is both C’ and G2, also optimal, 

(iii) The scheme applies also to a large number of the most commonly used analytic 
surfaces in computer-aided design. 

There is also a good potential for generalising these ideas to higher degree spline 
approximations and higher degree rational polynomials (Floater, 1994). 
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