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Abstract

We show that many rational parametric curves can be interpolated, in a Hermite sense, by polynomial curves whose degree,
relative to the number of data being interpolated, is lower than usual. The construction unifies and generalizes the families of
circle and conic approximations of Lyche and Mørken and the author in which the approximation order is twice the degree of the
polynomial.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A function can be interpolated uniquely at m + 1 points by a polynomial of degree at most m, and the same is true
when some of the function values are replaced by derivatives, in the sense of Hermite. When interpolating curves,
however, it has been shown by several authors that in certain cases a parametric polynomial of degree m can match
more than m + 1 ‘geometric data’ (points, tangents, curvatures, etc.) (de Boor et al., 1987; Dokken et al., 1990;
Fang, 1999; Floater, 1997; Goldapp, 1991; Grandine and Hogan, 2004; Höllig and Koch, 1995; Jaklic et al., Preprint;
Lyche and Mørken, 1994; Mørken and Scherer, 1997; Schaback, 1998). For planar curves, it is sometimes possible to
match 2m data. All these results require some kind of assumption on the curve being approximated. For example, non-
vanishing curvature of the curve is needed for the cubic interpolant of (de Boor et al., 1987). The curve is restricted
to a circle in (Dokken et al., 1990; Goldapp, 1991; Lyche and Mørken, 1994) and to a conic section in (Fang, 1999;
Floater, 1997).

For general m, little seems to be known about the existence of such interpolants apart from the two families of
interpolants of odd degree m to circles and conic sections found in (Lyche and Mørken, 1994) and (Floater, 1997),
each having a total of 2m contacts.

The purpose of this paper is to gain further insight into the general problem by showing that a large class of rational
parametric curves can be interpolated, in a Hermite sense, by a polynomial of degree m matching 2m − 2k + 4 data,
where k is the total degree of the rational curve. Specifically, let r : [a, b] → Rd , d � 2, be the rational curve

r(t) = f(t)/g(t),
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where f and g are polynomials of degrees at most M and N and let k = M + N . For each sample of parameter values
a � t1 < t2 < · · · < tn � b we find a polynomial p of degree at most n + k − 2 and scalar values μ1, . . . ,μn satisfying
the 2n interpolation conditions

p(ti) = r(ti), p′(ti) = μir′(ti), i = 1,2, . . . , n. (1)

We make two assumptions on the denominator g for the construction to work:

(A1) g has no roots in [a, b],
(A2) g has no double roots (real or complex).

Assumption (A1) is hardly a restriction because it merely prevents r having poles in [a, b]. Assumption (A2) is not
very strong either. For example, it holds for the well-known rational representation of a circular arc (15). There are
no restrictions on the numerator f. We show that the approximation has order O(h2n) as h → 0 where h = tn − t1. By
choosing the points ti symmetrically and letting some of them coalesce we recover the circle and conic approximations
of odd degree n of (Lyche and Mørken, 1994) and (Floater, 1997).

2. The interpolant

The basic idea is to let

p(t) = r(t) + λ(t)ωn(t)r′(t), (2)

where

ωn(t) = (t − t1)(t − t2) · · · (t − tn),

and λ is a polynomial to be determined. This makes p in general a rational curve but we will show that certain choices
of λ force p to be a polynomial. Consider first the interpolation properties of p. Since ωn(ti) = 0, we have p(ti) = r(ti),
and differentiating p gives

p′ = r′ + λ′ωnr′ + λω′
nr′ + λωnr′′,

which means that

p′(ti) = (
1 + λ(ti)ω

′
n(ti)

)
r′(ti), (3)

showing that condition (1) is satisfied with μi = 1 + λ(ti)ω
′
n(ti). Considering how to find a suitable polynomial λ,

observe that

p(t) = g(t) − λ(t)ωn(t)g
′(t)

g2(t)
f(t) + λ(t)ωn(t)

g(t)
f′(t).

Thus to force p to be a polynomial it is sufficient to force the coefficients of f and f′ to be polynomials. This can easily
be arranged for the coefficient of f′ by letting

λ(t) = g(t)X(t),

for some polynomial X to be determined. With this substitution, we now have

p(t) = 1 − X(t)ωn(t)g
′(t)

g(t)
f(t) + X(t)ωn(t)f′(t),

and it remains to find a polynomial X such that the polynomial 1 − Xωng
′ divides by the polynomial g. Put another

way, if we can find two polynomials X and Y such that

ωn(t)g
′(t)X(t) + g(t)Y (t) = 1, (4)

then

p(t) = Y(t)f(t) + X(t)ωn(t)f′(t) (5)

is a polynomial satisfying (1).
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Consider then Eq. (4), which can be written as

a0(t)X(t) + a1(t)Y (t) = 1, (6)

where

a0 = ωng
′, a1 = g.

It is known from algebra that if a0 and a1 are relatively prime, i.e., have no roots in common, then Euclid’s g.c.d.
algorithm can be used to find unique real polynomial solutions X and Y of degrees at most d(a1) − 1 and d(a0) − 1,
respectively, where d(p) denotes the degree of a polynomial p. A proof of this is given, for example, in (Daubechies,
1992, Chapter 6). This is where we need the assumptions (A1) and (A2): they ensure that a0 and a1 are relatively
prime. Since a0 and a1 have degrees n + N − 1 and N , respectively, and f has degree M and f′ degree M − 1, and
k = M + N , we deduce

Theorem 1. There are unique polynomials X and Y of degrees at most N − 1 and n + N − 2, respectively, that
solve (4). With these X and Y , p in (5) is a polynomial of degree at most n + k − 2 that solves (1).

We now describe how Euclid’s algorithm can be used to find the solutions X and Y . Since n � 1 note that d(a0) �
d(a1). Then for each k = 0,1,2, . . . , we divide ak by ak+1 and find the remainder, which defines the polynomials qk

and ak+2 in

ak = qkak+1 + ak+2, (7)

where d(qk) = d(ak) − d(ak+1) and d(ak+2) < d(ak+1). The algorithm stops when the remainder ak+2 is a constant
polynomial, at which point we let r = k. If the remainder ar+2 is zero then a0 and a1 have the common denominator
ar+1 and are not coprime. Under assumptions (A1) and (A2) though, the constant ar+2 will be non-zero, in which
case we work backwards to obtain the solutions X and Y to (6). We start by rewriting (7) with k = r as

ar+2 = b0ar + b1ar+1, (8)

where b0 = 1 and b1 = −qr . Then (7) with k = r − 1 gives

ar+2 = b0ar + b1(ar−1 − qr−1ar) = b1ar−1 + b2ar ,

where b2 = b0 − qr−1b1. Continuing in this way, we end up with

ar+2 = bra0 + br+1a1, (9)

where

bj = bj−2 − qr−j+1bj−1, j = 2,3, . . . , r + 1. (10)

Finally, since ar+2 is a non-zero constant, we can divide (9) by ar+2 to get

1 = br

ar+2
a0 + br+1

ar+2
a1,

and this shows that (6) has the solutions

X(t) = br(t)

ar+2
, Y (t) = br+1(t)

ar+2
.

Now consider the degrees of X and Y . We have d(b0) = 0 and d(b1) = d(qr), and from (10) we find

d(br) = d(q1) + · · · + d(qr) = d(a1) − d(ar+1) < d(a1),

and similarly,

d(br+1) = d(a0) − d(ar+1) < d(a0).

Thus d(X) < d(a1) and d(Y ) < d(a0), as claimed. The uniqueness of X and Y is easily deduced by supposing their
are two solution pairs and taking their differences.
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3. Approximation order

The fact that p has 2n geometric contacts with r, counting multiplicities, suggests that the error between p and
r might be O(h2n) as h → 0 where h = tn − t1. The approach used to obtain the approximation order in (Dokken
et al., 1990; Goldapp, 1991; Lyche and Mørken, 1994; Floater, 1997) was to use the algebraic form of the circle or
conic section. Using the algebraic form of an arbitrary parametric rational curve might however create difficulties.
Fortunately, it turns out that we do not need the implicit form at all. We can instead use the reparameterization

φ(t) = t + λ(t)ωn(t). (11)

Theorem 2. There are constants h0 > 0 and C > 0 depending only on r, a, b, and n such that

max
t1�t�tn

∣∣r(φ(t)
) − p(t)

∣∣ � Ch2n for h � h0.

Proof. If s(t) := r(φ(t)) then because

φ(ti) = ti , and φ′(ti) = 1 + λ(ti)ω
′
n(ti), i = 1, . . . , n,

we have from (3),

p(ti) = s(ti), and p′(ti) = φ′(ti)r′(ti) = s′(ti), i = 1, . . . , n.

It follows (Chapter 5 of (Isaacson and Keller, 1966)) that for t ∈ [a, b],
s(t) − p(t) = (t − t1)

2 · · · (t − tn)
2[t1, t1, t2, t2, . . . , tn, tn, t]s, (12)

the latter term denoting a divided difference of s, and so

max
t1�t�tn

∣∣s(t) − p(t)
∣∣ � h2n

∥∥s(2n)
∥∥/(2n)!,

where | · | denotes the Euclidean norm in R
d and ‖s(2n)‖ = maxa�t�b |s(2n)(t)|. It thus remains to show that ‖s(2n)‖

is bounded by a constant as h → 0. To answer this, observe that by Faà di Bruno’s formula (Johnson, 2002), the 2nth
derivative of s is a linear combination of the derivatives of r of orders 1 to 2n, whose coefficients are sums of products
of the derivatives of φ of orders 1 to 2n. Since r is fixed, it is therefore enough to show that all derivatives of φ up
to order 2n are bounded as h → 0. By Eq. (11), since λ = gX and g is fixed and all derivatives of ωn are bounded
as h → 0, it is sufficient to show that all the derivatives of X of order up to 2n are bounded as h → 0. Since X has
at most degree N − 1 it remains to show that X has bounded derivatives up to order N − 1. To this end we make
the following observation. If z1, . . . , zN are the roots (real or complex) of g, which are distinct by (A2), then since
X(zi) = 1/(g′(zi)ωn(zi)) for i = 1, . . . ,N in (4), and since X has degree at most N − 1, it follows that X can be
expressed as the Lagrange interpolant

X(t) =
N∑

i=1

Li(t)

g′(zi)ωn(zi)
, Li(t) =

N∏
k=1, k �=i

t − zk

zi − zk

.

Note that even though some of the roots z1, . . . , zN may be complex we already know that X is real. In fact since g is
real its complex roots come in conjugate pairs. Thus for each i, there is some j such that zi = zj , where j �= i if zi is
complex and j = i if zi is real. It follows that Li(t) = Lj (t) and consequently X(t) = X(t).

Thus for k = 1, . . . ,N − 1, the kth derivative of X is bounded as

∣∣X(k)(t)
∣∣ �

N∑
i=1

|L(k)
i (t)|

|g′(zi)||ωn(zi)| ,

and it is clearly enough to show that |ωn(zi)| is bounded away from zero. Well by (A1), the minimum distance in C

between the roots z1, . . . , zN and the real interval [a, b] is some α > 0, which implies that∣∣ωn(zi)
∣∣ � αn, i = 1, . . . ,N. �
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4. Interpolating higher order derivatives

All the theory (Theorems 1 and 2) extends in a natural way if we allow some of the parameter values t1, . . . , tn in
[a, b] to coalesce, i.e., allow t1 � · · · � tn. We again define p by Eq. (2) where λ = Xg, and X and Y are the unique
solutions of degrees � N −1 and � n+N −2 to Eq. (4). As the next theorem shows, p then interpolates r in the usual
Hermite sense, fulfilling a total of n interpolation conditions, but p is also a Hermite interpolant to the reparameterized
curve s = r ◦ φ, satisfying a total of 2n interpolation conditions; thus p has 2n geometric contacts with r.

Theorem 3. If the point tα has multiplicity � then

p(i)(tα) = r(i)(tα), 0 � i � � − 1, (13)

and

p(i)(tα) = s(i)(tα), 0 � i � 2� − 1. (14)

Proof. Eq. (13) follows from differentiating (2) i times and noticing that ωn(t) contains the factor (t − tα)�.
Regarding Eq. (14), observe that the solutions X and Y to Eq. (4) depend continuously on the ti , whether the ti are

distinct or not. Thus the same holds for λ, p, φ, and s, and it follows that Eq. (12) extends to non-distinct ti . Therefore,
noticing that we can differentiate s as often as we like, we can differentiate (12) i times and Eq. (14) follows from the
fact that the polynomial on the right-hand side of (12) contains the factor (t − tα)2�. �
5. Circle case

Consider applying the theory to a circular arc. A typical representation of the unit circle centred at the origin is the
quadratic rational,

(1 − t2,2t)

1 + t2
, (15)

which, with −∞ < t < ∞, covers all points on the circle except (−1,0). With Theorem 1 in mind though, we want
to keep the degrees of the numerator and denominator as low as possible. Thus we reduce the degree of the numerator
by 1 by adding the vector (1,0) to (15), and we will interpolate the rational curve

r(t) = f(t)
g(t)

= (2,2t)

1 + t2
, (16)

which represents the circle of unit radius centred at (1,0). There is no loss in applying this shift for if p is a polynomial
interpolant to (16) satisfying (1) then the shift of p by (−1,0) will be a similar interpolant to (15).

Considering r in (16), note that since g has the roots i and −i, where i = √−1, it has no roots in any real interval
[a, b] and no double roots in C and thus satisfies assumptions (A1) and (A2) in any interval [a, b]. Thus, since the
numerator f and denominator g have degrees M = 1 and N = 2 so that k = 3, applying Theorem 1 proves

Theorem 4. Let t1 < · · · < tn be arbitrary increasing values in R. If r is the circle in (16), a solution p to (1) is

p(t) = Y(t)(2,2t) + X(t)ωn(t)(0,2), (17)

where X and Y are the unique solutions of degrees at most 1 and n to

2tωn(t)X(t) + (
1 + t2)Y(t) = 1, (18)

and the degree of p is at most n + 1.

For most choices of interpolation points t1, . . . , tn, two steps of Euclid’s algorithm will be required to compute the
polynomials X(t) and Y(t) in (18). There are, however, certain choices of the ti for which only one step is needed, and
the degrees of X, Y , and p are then reduced by one. This happens if we restrict n to be odd and place the parameter
values t1, . . . , tn symmetrically around t = 0.
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Theorem 5. Suppose n = 2s + 1 for some s � 0 and that

(t1, . . . , tn) = (−us, . . . ,−u1,0, u1, . . . , us) (19)

for some values 0 < u1 < · · · < us . Then p in (17) has degree n and

X(t) = 1

A0(−1)
, Y (t) = −A0(t

2) − A0(−1)

A0(−1)(1 + t2)
, (20)

where

A0(u) = 2u
(
u − u2

1

) · · · (u − u2
s

)
.

Proof. The first step of Euclid’s algorithm requires finding q0(t) and a2(t) such that

2tωn(t) = (
1 + t2)q0(t) + a2(t).

But due to the choice of the points ti ,

2tωn(t) = 2t2(t2 − u2
1

) · · · (t2 − u2
s

) = A0
(
t2),

which is a polynomial in t2. Therefore a2 is a constant and no further steps of the algorithm are necessary. We find

X(t) = 1

a2
, and Y(t) = −q0(t)

a2
,

where

q0(t) = A0(t
2) − A0(−1)

1 + t2
, and a2(t) = A0(−1). �

If required, one can express Y(t) in (20) explicitly as a polynomial. One way is to define u0 = 0 and

Bi(u) = 2
(
u − u2

0

) · · · (u − u2
i−1

)(−1 − u2
i

) · · · (−1 − u2
s

)
,

so that

A0(u) − A0(−1) = Bs+1(u) − B0(u) =
s∑

i=0

(
Bi+1(u) − Bi(u)

)
,

giving

A0(u) − A0(−1)

1 + u
= 2

s∑
i=0

(
u − u2

0

) · · · (u − u2
i−1

)(−1 − u2
i+1

) · · · (−1 − u2
s

)
. (21)

Alternatively, we can express p in Theorem 5 directly as a polynomial by noticing that since p has degree n, there
must be some vector d ∈ R

2 such that

p(t) =
n∑

j=1

Lj (t)r(tj ) + dωn(t), Lj (t) =
n∏

k=1, k �=j

t − tk

tj − tk
. (22)

We can find d by equating the coefficients of the highest power tn in (17) and (22). Since the leading term of Y(t) is
−2tn−1/A0(−1) and the leading term of ωn(t) is tn, the leading term of p is (0,−2tn/A0(−1)), hence

d =
(

0,
−2

A0(−1)

)
=

(
0,

1

(−1 − u2
1) · · · (−1 − u2

s )

)
.

On the other hand, if all that is needed is to evaluate p at some t then the simplest approach is to evaluate X and Y

using (20) and to substitute into (17). Such numerical evaluations could be used to represent p with respect to some
other polynomial basis or spline basis using a quasi-interpolant approach.
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Two limiting cases of p in Theorem 5 have been found before. If we let u1 = · · · = us = 0, one obtains, using (21)
and (17),

X(t) = −(−1)s/2, Y (t) =
s∑

i=0

(−t2)i
,

p(t) =
(

2
s∑

i=0

(−t2)i
,2t

s−1∑
i=0

(−t2)i + t
(−t2)s

)
.

This is the Taylor-like approximation found by Lyche and Mørken (1994) having 2n contacts at t = 0. Another limiting
case is u1 = · · · = us = v > 0, which gives

X(t) = −1

2(−1 − v2)s
, Y (t) = 1 + t2

s∑
i=1

(t2 − v2)i−1

(−1 − v2)i
,

and when these are substituted into (17), one finds, after a lengthy calculation, that p is the Hermite interpolant of
(Floater, 1997) applied to the circular arc (16). This approximation has n − 1 contacts at t = −v and t = v and two at
t = 0, giving again a total of 2n. The cubic case n = 3 was found earlier by Dokken et al. (1990) and Goldapp (1991).

Fig. 1(a)–(f) shows the interpolant p of Theorem 5 for various choices of s and u = (u1, . . . , us). The data and
the error e in the interval [0.5,0.5] are respectively: (a) n = 3, u = (0.0), e = 7.8 × 10−3; (b) n = 3, u = (0.5),
e = 7.4 × 10−4; (c) n = 5, u = (0.0,0.0), e = 4.9 × 10−4; (d) n = 5, u = (0.5,0.5), e = 1.6 × 10−5; (e) n = 5,
u = (0.25,0.5), e = 3.6 × 10−6; (f) n = 9, u = (0.125,0.25,0.375,0.5), e = 2.8 × 10−10.

Fig. 1. (a)–(c) and (d)–(f). Plots of p in [−0.5,0.5].
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