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Shape preserving interpolation by
cubic G1 splines in R

3

Received: date / Accepted: date

Abstract In this paper, G1 continuous cubic spline interpolation of data
points in R

3, based on a discrete approximation of the strain energy, is stud-
ied. Simple geometric conditions on data are presented that guarantee the
existence of the interpolant. The interpolating spline is regular, loop-, cusp-
and fold-free.
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1 Introduction

The problem of a construction of an interpolating curve through a sequence
of data points is one of the basic problems of CAGD (Computer Aided Geo-
metric Design) and frequently arises in research and in practical applications,
such as modeling, design,...

A great deal of research on this topic has been done (see [5] and references
therein), especially on the shape preserving interpolation, since an important
goal for the interpolant is to follow the data as close as possible. Many inter-
polation schemes exist with different resulting interpolants. For example, it
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is well-known, that the cubic C2 interpolating spline minimizes the (approxi-
mate) strain energy, and thus gives a good (physically based) approximation
of the data points. Unfortunately, its construction involves solving a large
global system of equations, that depends on the chosen parameterization of
the curve.

Beside classical approaches, in recent years a notable improvement on
interpolatory subdivision schemes and geometric interpolation was made (see
[4], [3], [6], [7], [9] and references therein). Here the problems are usually
nonlinear and much harder to tackle than in classical approaches.

There are several goals in interpolation scheme construction. The inter-
polating spline should be regular and without unwanted behaviour, such as
loops, cusps or folds on spline segments. Furthermore, it should closely follow
the data polygon (the polygon, defined by the sequence of data points) and
be pleasing to the human eye - a condition, which is quite difficult to express
in mathematical terms.

The scheme should be local if possible, since thus an efficient construction
of the spline can be done, and solving of a large global system of equations
can be avoided.

Usually, the Lagrange interpolation does not have enough shape parame-
ters to sufficiently control the shape of the curve. The Hermite interpolation
adds the choice of tangent directions. They can be given as prescribed data,
be locally constructed or manipulated by the designer, or be automatically
generated in some intelligent way. If the first possibility is given, then the
cubic Hermite interpolation problem always has a unique solution. Practical
examples have shown, that the tangent directions, interactively given by the
designer, can quickly give curves with unwanted behaviour. This approach
is thus useful in practice just for small local corrections of the shape of the
curve. The last possibility is the most complicated, since the scheme should
guarantee the existence of the interpolant and furthermore, construct tangent
directions in an appropriate way.

In this paper, we will focus on the third possibility, a local scheme for
the construction of the interpolating spline through the given data points
in R

3. Simple geometric conditions on tangent directions will be given, that
guarantee the existence of the interpolant. A heuristic for automatic gener-
ation of admissible tangent directions, based on the analysis of the planar
case ([8]) will be used for the construction of the spline interpolant. The re-
sulting interpolant closely resembles the cubic C2 interpolating spline, which
minimizes the (approximate) strain energy of the curve.

The paper is organized as follows. In Section 2 the interpolation problem
is presented and the strain energy is recalled. In Section 3 the discrete approx-
imation of the (approximate) strain energy is derived, and the shape of the
interpolating spline is analyzed. The paper is concluded by some examples
in Section 4.
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2 Interpolation problem and the strain energy

The problem considered is as follows. Suppose that we are given data points

T j ∈ R
3, T j 6= T j+1, j = 0, 1, . . . , n,

and associated interpolation parameters

tj ∈ R, j = 0, 1, . . . , n, t0 < t1 < · · · < tn. (1)

Usually the interpolation parameters are derived from the data points by the
centripetal or the chord length parameterization (or by some other method),
but in general we will assume that they are prescribed in advance. Our goal
is to find a G1 continuous parametric spline curve s : [t0, tn] → R

3 such that

si := s|[ti−1,ti] ∈ P3, i = 1, 2, . . . , n,

si(tk) = T k, k = i− 1, i, i = 1, 2, . . . , n, (2)

s
′
i(tk) = αi,k−i+1 dk, k = i− 1, i, i = 1, 2, . . . , n,

where αi,k−i+1 > 0 are unknown positive scalars, dk normalized tangent
direction vectors, and P3 is the space of parametric polynomials of degree
≤ 3. There are infinitely many solutions of this problem, since it is well-
known that any set of αi,k−i+1 > 0 and dk gives a unique spline curve s.
Thus a large set of free parameters is available that can be used to design an
appropriate shape of the interpolatory curve.

One of the natural approaches how to deal with the free parameters is
to define a suitable functional and minimize it. Usually, the shape of the
curve depends mostly on its curvature κ and therefore it seems reasonable
to minimize the functional

ϕs(α) :=

∫ tn

t0

‖κ(t)‖2 dt =

∫ tn

t0

‖s′(t) × s
′′(t)‖2

‖s′(t)‖6
dt, (3)

where α := (αi,k−i+1)
n,i

i=1,k=i−1 ∈ R
2n. The expression (3) is called the

strain energy of the curve. In practice ([2], [10]), the approximate strain
energy (called also linearized bending energy)

ϕ(α) :=

∫ tn

t0

‖s′′(t)‖2 dt, (4)

is used instead of (3). Note that the approximate strain energy is close to a
real one if ‖s′(t)‖ ≈ 1. If this is not the case, it can be far away from the
real strain energy. But the beauty of the approximant lies in the fact that
the minimization problem for the coefficients becomes linear.

Note also that in our case the curve s is only G1, thus s
′′ might not be

continuous, but since it has only a finite number of finite jumps, the integral
(4) clearly exists.

The approach of minimizing (4) has been used in the paper [11]. There the
authors assumed that the tangent directions are given in advance. It turned
out that some unwanted situations occur that have to be solved by adding
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artificial data. This can be quite computationally intensive when dealing with
a huge number of data.

In this paper we will consider a similar approach, that will resolve the
above mentioned problems. Instead of minimizing the approximate strain en-
ergy (4), we will minimize its discrete approximation. Of course, the positivity
of scalar parameters αi,k−i+1 must be taken into account, which obviously
leads to a constrained optimization problem. On the contrast to [11] where
tangent directions were given in advance, we will only need the data points,
and shall consider that the tangent directions are determined in some feasible
way. One of the possible approaches how to choose tangent directions will be
described.

3 Analysis of the interpolating spline

Let us introduce the notation used in the paper. Let 〈·, ·〉 be the standard
inner product in R

3 and ∠(a, b) the angle formed by the vectors a and b.
Recall that

〈a, b〉 = ‖a‖ ‖b‖ cos∠(a, b).

We will use the standard forward difference notation, ∆(•)i = (•)i+1 − (•)i,
and a divided difference

[ui, ui+1, . . . , uk−1, uk]f =
[ui+1, . . . , uk]f − [ui, . . . , uk−1]f

uk − ui

,

with [ui]f = f(ui) and [ui, . . . , ui
︸ ︷︷ ︸

j

]f = f(j−1)(ui)
(j−1)! .

Consider the (approximate) strain energy functional ϕ in (4). If

ϕi(α) :=

∫ ti

ti−1

‖s′′i (t)‖2 dt, i = 1, 2, . . . , n,

then ϕ can be written as

ϕ(α) =

n∑

i=1

ϕi(α).

We want to minimize it on the open set D = {α ∈ R
2n |α > 0}. Here the

inequality α > 0 is considered componentwise. But ϕi depends only on the
local parameters αi := (αi,0, αi,1), thus ϕi(α) = ϕi(αi) and obviously

min
α∈D

ϕ(α) =
n∑

i=1

min
αi∈Di

ϕi(αi),

where Di = {αi ∈ R
2 |αi > 0}. Instead of explicitly deriving s

′′
i and applying

minimization as in [11], a discrete approximation of ϕi will be used. This will
exclude some unwanted possibilities which imply preprocessing of data points
to guarantee that the minimum occurs in a desired region (for example of



Shape preserving interpolation by cubic G1 splines in R
3 5

this, see [11], e.g.). For a large number of data points the computational cost
of this can be substantial. It is clear that ϕi ≡ 0 if si is a line segment joining
T i−1 and T i. In general, si will be a cubic polynomial of course, but a choice
of an appropriate αi might minimize its first two leading coefficients and
thus make it closer to its data polygon (the line T i−1T i). To find a suitable
discrete approximation of ϕi, si will be written in the Newton form

si(t) = T i−1 + (t− ti−1) [ti−1, ti−1]si + (t− ti−1)
2 [ti−1, ti−1, ti]si (5)

+ (t− ti−1)
2 (t− ti)[ti−1, ti−1, ti, ti]si,

where [ti−1, ti−1]si = αi,0 di−1 and [ti, ti]si = αi,1 di. It is now clear that one
way to minimize its two leading coefficients is to minimize

‖[ti−1, ti−1, ti]si‖
2 + ‖[ti−1, ti−1, ti, ti]si‖

2.

This idea is based on minimization of unwanted oscillations, introduced by
polynomials of high degrees. But unfortunately it turns out that this ap-
proach leads to a complicated analysis. In order to keep things as simple as
possible, the observation that

‖[ti−1, ti−1, ti, ti]si‖ ≤
1

∆ti−1
(‖[ti−1, ti−1, ti]si‖ + ‖[ti−1, ti, ti]si‖)

suggests to minimize

ψi(αi) := ‖[ti−1, ti−1, ti]si‖
2 + ‖[ti−1, ti, ti]si‖

2, (6)

instead. Indeed, if ψi(αi) = 0, then

[ti−1, ti−1, ti]si = [ti−1, ti−1, ti, ti]si = 0,

and si in (5) reduces to a straight line. On the other hand, ψi can be viewed
as a discrete approximation of ϕi. Namely,

[ti−1, ti−1, ti]si =
1

2
s
′′
i (ξ1), [ti−1, ti, ti]si =

1

2
s
′′
i (ξ2), ξ1, ξ2 ∈ [ti−1, ti],

which implies

ψi(αi) =
1

2
‖s′′i (ξ3)‖

2, ξ3 ∈ [ti−1, ti],

i.e., a zeroth order approximation of 2ϕi/∆ti−1. Thus, instead of minimizing
ϕi, the minimization of ψi will be done.

An optimal choice of αi is stated in the following theorem.

Theorem 1 The nonlinear functional ψi, i = 1, 2, . . . , n, has a unique global

minimum in the interior of Di iff

α
∗
i :=

1

∆ti−1
(〈di−1, ∆T i−1〉, 〈di, ∆T i−1〉)

T
> 0.

Furthermore,

min
αi∈Di

ψi(αi) =
2 − c2i,0 − c2i,1

(∆ti−1)4
‖∆T i−1‖

2,

where
ci,k = cos∠ (di+k−1, ∆T i−1) , k = 0, 1.
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Proof Some basic properties of divided differences together with (2) simplify
(6) to

ψi(αi) =
1

(∆ti−1)4
(
(∆ti−1)

2
(
α2

i,0 + α2
i,1

)
− 2∆ti−1·

〈αi,0 di−1 + αi,1 di, ∆T i−1〉 + 2 ‖∆T i−1‖
2
)
.

Minima of ψi are either on the boundary of Di or they are obtained by
taking partial derivatives of ψi. In the later case, a local minimum appears

at α
∗
i :=

(
α∗

i,0, α
∗
i,1

)T
, where

α∗
i,k =

〈di+k−1, ∆T i−1〉

∆ti−1
, k = 0, 1,

which leads to

m := ψi(α
∗
i ) =

2 − c2i,0 − c2i,1
(∆ti−1)4

‖∆T i−1‖
2.

It remains to prove that this is a global minimum as well. Take any αi =
(αi,0, αi,1)

T on the boundary of Di. Thus αi,k = 0 for at least one k ∈ {0, 1}.
If αi,0 = αi,1 = 0 then ψi(αi) = 2 ‖∆T i−1‖

2/(∆ti−1)
4 ≥ m, and it re-

mains to consider the case when only one of αi,k is positive. Due to the
symmetry, it is enough to study αi,0 > 0 only. But in this case it is easy
to check that the functional ψi|αi,1=0 attains its global minimum at αi,0 =

〈di−1, ∆T i−1〉/∆ti−1 implying ψi(αi,0, 0) =
(
2 − c2i,0

)
‖∆T i−1‖

2/(∆ti−1)
4 ≥

m. This concludes the proof of the theorem. ⊓⊔

Notice that the minimum can also be zero. In this case ci,0 = ci,1 = 0
and the cubic parametric spline segment si reduces to a straight line si(t) =
T i−1 + (t− ti−1)[ti−1, ti]si.

Corollary 1 The conditions α
∗
i > 0, i = 1, 2, . . . , n, have a simple geometric

interpretation, i.e., ∠ (di+k−1, ∆T i−1) ∈ [0, π
2 ), k = 0, 1.

Now suppose that the assumptions of Theorem 1 are satisfied. Then an
important question arises whether the resulting cubic spline segment si is
regular on [ti−1, ti], i = 1, 2, . . . , n. The answer is confirmative, even more, si

has no cusps, loops or folds and is independent of the parameterization (1)
as stated in the following theorem.

Theorem 2 Let the assumptions of Theorem 1 be satisfied and let si be
the resulting Hermite geometric interpolant defined by (2). Then the spline

segment si is regular, loop-, cusp-, fold-free and parameterization independent
on [ti−1, ti], i = 1, 2, . . . , n.

Proof By generalizing the ideas for the planar case in [8], it can be shown
that the claims of the theorem hold. The proof will be omitted. ⊓⊔

One of the possible heuristic approaches on how to automatically choose
proper tangent directions, is addressed in the following remark.
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Remark 1 By considering the approach for the planar case, described in [8] on
triples of consecutive data points, an admissible set of tangent directions can
be constructed automatically. The algorithm is as follows. Consider Fig. 1.
First, take vectors T i−1T i and T i+1T i, normalize them and set them at
the point T i. Let us denote the vectors by ui and vi, respectively. Let a
normalized vector 1/2 · (ui + vi) be denoted by si. Let z be −1, if the third
component of the cross product ∆T i−1 ×∆T i is negative, and 1, otherwise.
Now rotate the vector si around T i by an angle of z · π/2 in the positive
direction. Thus constructed vector di is an admissible tangent direction (in
Fig. 1 the admissible area in the plane, defined by T i−1,T i,T i+1 is colored
in gray). With so constructed additional data, a unique interpolating spline
can be constructed by Theorem 1 and (2).

Fig. 1 A local construction of a tangent direction di at T i.

The main result of this paper can be generalized to R
d, d ≥ 3.

Remark 2 Note that Theorem 1 can be straightforwardly generalized to inter-
polation of data points in the space R

d for any d ≥ 3. The tangent directions
should be constructed in such a way, that the conditions of Corollary 1 are
satisfied. Note that a higher dimension d brings additional shape parameters.
This can be exploited for fine tuning the shape of the interpolant.

4 Examples

Let us conclude the paper by numerical examples. First consider Fig. 2.
A cubic G1 Hermite interpolant (solid curve), constructed by our method,
closely resembles the C2 cubic interpolating spline (dotted curve). In our
scheme, based on Theorem 1, instead of solving a global system of equations,
we had to solve a sequence of small systems. This can be done much more
efficiently than in the C2 case, where solving of a large global system can not



8 Gašper Jaklič, Emil Žagar

be avoided. Here, the tangent directions were chosen by using the approach,
described in Remark 1. Of course, any other choice of admissible tangent
directions would result in an appropriate curve. Our approach in some sense
minimizes the deviation of the interpolatory curve from the data polygon by
considering osculating planes at the data points.

In Fig. 2 there is also a dashed curve which represents the well-known
Akima interpolant (see [1]). This linear scheme also generates a G1 curve
based on data points only and it can be clearly seen that our method gives
comparable results.

In Fig. 3 it can be seen that our interpolant is practically indistinguish-
able from the C2 cubic interpolant, if the data are sampled from a spiral
(cos t, sin t, t) at equidistant parameters ti = 0, 1, . . . , 20.
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Fig. 2 Hermite G1 interpolating spline (solid), C2 cubic spline interpolant (dotted)
and Akima interpolant (dashed) of a “space” epitrochoid given by ((R + r) cos t −
d cos ((R + r)t/r) , (R + r) sin t − d sin ((R + r)t/r) , t) with R = 1.2, r = 1 and
d = 2 at the parameters ti = 0, 7.85, 15.71, 23.56, 31.42.
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Fig. 3 Hermite G1 interpolating spline (solid) and the C2 cubic spline inter-
polant (dotted) for the data, sampled from a spiral (cos t, sin t, t) at parameters
ti = 0, 1, . . . , 20.
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