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Abstract.

In this paper, geometric interpolation by G1 cubic spline is studied. A wide class
of sufficient conditions that admit a G1 cubic spline interpolant is determined. In
particular, convex data as well as data with inflection points are included. The existence
requirements are based upon geometric properties of data entirely, and can be easily
verified in advance. The algorithm that carries out the verification is added.
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1 Introduction.

Geometric interpolation schemes, introduced in [1], are becoming more and
more important practical tool in the approximation of curves and surfaces. Per-
haps the main reason could be found in the fact that such interpolants please the
human eye more than usual linear counterparts. This is clearly a consequence
of the basic principle of the geometric interpolation: free parameters of a para-
metric interpolant are determined by geometric conditions only. An interpolant
should pass through a point, should have a prescribed tangent or normal direc-
tion, a curvature, etc. But, no additional artificial conditions are imposed on it
such as at which parameter values the interpolation conditions should be met.
Since no free parameters are used ineffectively, geometric interpolation often re-
sults in higher approximation order than one would expect from the functional
case.

But geometric schemes involve a nonlinear part, and the questions like the
existence and the efficient implementation require a more subtle analysis. Most
of the results obtained are based upon the asymptotic analysis, and only a few
papers examine geometric conditions on given data ([8], [6], [5]). A unified theory
of geometric Hermite interpolation for parametric curves could be found in [2],
and an excellent recent overview of the results is given in [3].

However, results offered by the asymptotic analysis are not always adequate
in practical applications. If one is merely looking for an interpolant of a nice
shape, suppositions like ”if data points are sampled dense enough” are not very
encouraging. Therefore robust algorithms should be based upon conditions that
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ensure the existence in advance if ever possible. But in geometric interpolation,
this can be achieved very rarely. In this paper, we show that it can be done
in the case of planar G1 cubic spline interpolation. The interpolating problem
concerned is the following. Let

(1.1) TTTTTTTTT i ∈ R
2, i = 0, 1, 2, . . . , 3m, TTTTTTTTT i 6= TTTTTTTTT i+1,

be a given sequence of data points. Find a cubic G1 spline curve PPPPPPPPP : [a, b] → R
2

with breakpoints
a := u0 < u1 < · · · < um := b

that interpolates the data TTTTTTTTT i in the prescribed order so that PPPPPPPPP (uℓ) = TTTTTTTTT 3ℓ. Let
ddddddddd3ℓ, ‖ddddddddd3ℓ‖2 = 1, denote the tangent directions of the spline curve PPPPPPPPP at uℓ. A
piecewise representation

PPPPPPPPP ℓ
(

tℓ
)

:= PPPPPPPPP (u)




[uℓ−1,uℓ]
, tℓ :=

u − uℓ−1

∆uℓ−1
∈ [0, 1], ℓ = 1, 2, . . . , m,

rewrites the interpolation problem as follows: find cubic polynomials PPPPPPPPP ℓ such
that

PPPPPPPPP ℓ
(

tℓi
)

= TTTTTTTTT 3(ℓ−1)+i, i = 0, . . . , 3,

d

dtℓ
PPPPPPPPP ℓ(0) = αℓ

0ddddddddd3(ℓ−1),
d

dtℓ
PPPPPPPPP ℓ(1) = αℓ

3ddddddddd3ℓ,
ℓ = 1, 2, . . . , m,(1.2)

where the unknown parameters tℓ1, t
ℓ
2, αℓ

0, α
ℓ
3 must satisfy

(1.3) 0 =: tℓ0 < tℓ1 < tℓ2 < tℓ3 := 1, αℓ
0 > 0, αℓ

3 > 0, ℓ = 1, 2, . . . , m.

Here, ∆ denotes the forward finite difference. Note that αℓ
i are chosen as local

derivatives lengths rather than global in order to simplify the notation of further
discussion. The tangent directions ddddddddd3ℓ, ℓ = 1, 2, . . . , m − 1, have clearly not
been prescribed by the data (1.1) yet. However, they may be known as data or
given as an approximation, perhaps as interactive shape parameters, or implicitly
prescribed by the requirement that PPPPPPPPP is G2 too. In the latter case, ddddddddd0 and ddddddddd3m

would be known, and the following m − 1 equations

1
(

αℓ
3

)2 det
(

3 (TTTTTTTTT 3ℓ − TTTTTTTTT 3ℓ−3) − αℓ
0ddddddddd3ℓ−3, ddddddddd3ℓ

)

=

1
(

αℓ+1
0

)2 det
(

ddddddddd3ℓ, 3 (TTTTTTTTT 3ℓ+3 − TTTTTTTTT 3ℓ) − αℓ+1
3 ddddddddd3ℓ+3

)

,

ℓ = 1, 2, . . . , m − 1,(1.4)

added. But, in general, the problem (1.2) and (1.3) need not have a solution.
So it is quite possible that the curve PPPPPPPPP could not interpolate all the prescribed
data. For this reason we split the interpolation problem (1.2) and (1.3) into two
steps. At the first and the main step, we determine the region for (dddddddddℓ)

m

ℓ=1 that
admits a solution of (1.2). The second step is left to the user, but with clear
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Figure 1.1: The directions for tangents (gray area) that imply the existence of a G1

spline PPPPPPPPP for convex data.

bounds on ddddddddd3ℓ. Some suggestions how to choose tangent directions are given in
Section 4.

As expected, it is not possible to break apart sufficient conditions that admit
a solution to a local level. However, if the data are convex, we are able to
determine possible angles that ddddddddd3ℓ is allowed to take by the local data only. To
be precise, at a point TTTTTTTTT 3ℓ the angle between ∆TTTTTTTTT 3ℓ−1 and ∆TTTTTTTTT 3ℓ gives a range
for ddddddddd3ℓ that is further split into at most three subangles. This partition depends
only on data TTTTTTTTT 3ℓ−3, TTTTTTTTT 3ℓ−2, . . . , TTTTTTTTT 3ℓ+3. All that is left is to connect particular
subangles in an allowable global choice by taking into account certain simple
additional relations between subangles at different breakpoints. This is carried
out by a straightforward backtracking algorithm. Figure 1.1 shows three such
possible choices (grayed). But if the data imply an inflexion point, the answer
is not so obvious, and is left to Section 4, as well as the precise explanation of
the convex case.

The outline of the paper is the following. In Section 2 a polynomial case is
considered and geometric conditions that imply the existence of the interpolant
are derived. Section 3 is devoted to a proof of two main theorems of Section 2.
In Section 4 the results are carried over to G1 cubic spline curves, and the
conclusions are presented as an algorithm.

2 Polynomial case.

The first step to the G1 spline construction is a single polynomial case. So,
m = 1, and PPPPPPPPP 1 = PPPPPPPPP . Further, let us shorten the notation by

ddddddddd0 := ddddddddd
1
0, ddddddddd3 := ddddddddd

1
3, t1 := t11, t2 := t12, α0 := α1

0, α3 := α1
3.

The nonlinear part of the interpolation problem (1.2) is to compute the admis-
sible parameters (t1, t2, α0, α3) ∈ D, where by (1.3)

D := {(t1, t2); 0 =: t0 < t1 < t2 < t3 := 1} × {(α0, α3); α0 > 0, α3 > 0} ,

is an open set with the boundary ∂D, determined by ti = ti+1 for at least
one i ∈ {0, 1, 2}, α0 = 0 or α3 = 0. Once this parameters are determined,
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the coefficients of PPPPPPPPP are obtained by using any standard interpolation scheme
componentwise. The problem of finding geometric conditions is very close to
the problem considered in [6], where the interpolation of six points by a cubic
polynomial curve is considered.

To reduce the interpolation problem (1.2) to the nonlinear system for unknown
(t1, t2, α0, α3) only, divided differences that map polynomials of degree ≤ 3 to
zero are applied to (1.2). Therefore,

[t0, t0, t1, t2, t3]PPPPPPPPP = 000000000 =
α0

ω̇(t0)
ddddddddd0 +

3
∑

j=1





3
∑

i=j

1

ω̇(ti)

1

ti − t0



∆TTTTTTTTT j−1,(2.1)

[t0, t1, t2, t3, t3]PPPPPPPPP = 000000000 =
α3

ω̇(t3)
ddddddddd3 +

2
∑

j=0

(

j
∑

i=0

1

ω̇(ti)

1

t3 − ti

)

∆TTTTTTTTT j ,(2.2)

where

ω(t) :=
3
∏

i=0

(t − ti).

Further, with linear functionals det (·, ∆TTTTTTTTT 0), det (·, ∆TTTTTTTTT 1) applied to (2.1), and
det (·, ∆TTTTTTTTT 1), det (·, ∆TTTTTTTTT 2) applied to (2.2) one obtains

α0

ω̇(t0)
det (ddddddddd0, ∆TTTTTTTTT k) +

3
∑

j=1





3
∑

i=j

1

ω̇(ti)

1

ti − t0



 det (∆TTTTTTTTT j−1, ∆TTTTTTTTT k) = 0,

α3

ω̇(t3)
det (ddddddddd3, ∆TTTTTTTTT k+1) +

2
∑

j=0

(

j
∑

i=0

1

ω̇(ti)

1

t3 − ti

)

det (∆TTTTTTTTT j , ∆TTTTTTTTT k+1) = 0,

k = 0, 1.

(2.3)

Let us recall that t0 = 0 and t3 = 1. After eliminating α0 from the first and α3

from the last equation, the system transforms to

1

t21(1 − t1)
− 1

t22(1 − t2)
(1 + µ1) +

t2 − t1

(1 − t1)(1 − t2)

(

1 + µ1(1 + λ1) −
λ1

λ2

)

= 0,

1

t2(1 − t2)2
− 1

t1(1 − t1)2
(1 + µ2) +

t2 − t1

t1t2

(

1 + µ2(1 + λ2) −
λ2

λ1

)

= 0,(2.4)

and

α0 = δ1
t1t2

t2 − t1

(

1

t22(1 − t2)
− t2 − t1

(1 − t1)(1 − t2)
(1 + λ1)

)

,(2.5)

α3 = δ2
(1 − t1)(1 − t2)

t2 − t1

(

1

t1(1 − t1)2
− t2 − t1

t1t2
(1 + λ2)

)

,(2.6)
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where the new constants introduced are defined more generally as

Di,j := det (∆TTTTTTTTT i, ∆TTTTTTTTT j),

λ2ℓ−1 :=
D3ℓ−3,3ℓ−1

D3ℓ−3,3ℓ−2
, λ2ℓ :=

D3ℓ−3,3ℓ−1

D3ℓ−2,3ℓ−1
,

µ2ℓ−1 :=
det (ddddddddd3ℓ−3, ∆TTTTTTTTT 3ℓ−2)

det (ddddddddd3ℓ−3, ∆TTTTTTTTT 3ℓ−3)
, µ2ℓ :=

det (∆TTTTTTTTT 3ℓ−2, ddddddddd3ℓ)

det (∆TTTTTTTTT 3ℓ−1, ddddddddd3ℓ)
,

δ2ℓ−1 :=
D3ℓ−3,3ℓ−2

det (ddddddddd3ℓ−3, ∆TTTTTTTTT 3ℓ−3)
, δ2ℓ :=

D3ℓ−2,3ℓ−1

det (∆TTTTTTTTT 3ℓ−1, ddddddddd3ℓ)
.

(2.7)

They have a clear geometric meaning, for example, Di,j is the volume of a
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Figure 2.1: The signs of λ1, λ2 depending on the position of TTTTTTTTT 3 (left), and the signs of
µ1, δ1 depending on the tangent direction ddddddddd0 (right).

parallelogram spanned by vectors ∆TTTTTTTTT i, ∆TTTTTTTTT j and the other constants are the
ratios of such volumes. Fig 2.1 illustrates the sign change in λ1 and λ2 (µ1 and
δ1) as TTTTTTTTT 3 (tangent direction ddddddddd0) changes. Note also that λ2ℓ−1, λ2ℓ depend on
data points TTTTTTTTT i only. Further, for the future use, we add the following observation.

Remark 2.1. The constants µ2ℓ−1, µ2ℓ, and sign δ2ℓ−1, sign δ2ℓ do not depend
on the length of tangents involved.

Remark 2.2. The system of equations (2.3) could also be derived from [6,
eq.(4)] by replacing TTTTTTTTT 1, TTTTTTTTT 4 with TTTTTTTTT 0 + (t1 − t0)α0ddddddddd0, TTTTTTTTT 5 − (t5 − t4)α3ddddddddd3 accord-
ingly, and passing to the limits t1 → t0 and t4 → t5 as well as renumbering
the remaining points TTTTTTTTT i and parameters ti, i = 0, 2, 3, 5, by 0, 1, 2, 3. Some of
the properties of the nonlinear system (2.3) are thus inherited from [6, eq.(8)–
(11)], but not all. In particular, the requirement αi > 0 has to be considered
thoroughly.

In order to make the analysis bearable some restrictions on the data must be
made. Namely, λk > 0, µk > 0 and δk > 0, k = 1, 2, will be assumed for the
convex data and λ1 · λ2 < 0, δk > 0 for the data that imply an inflection point.
Since the individual pieces will be composed in a spline curve, these assumptions
are very natural as one can see from Fig 2.1.

It is straightforward to compute the solution of the system (2.4) in a closed
form by using Gröbner basis or resultants. But not all the solutions will satisfy
0 < t1 < t2 < 1. Even if this is true, the solution may not produce positive
α0 and α3. This means that we are dealing with a problem that is only partly
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algebraic. The following lemmas reveal the possibility that PPPPPPPPP ′ vanishes at the
boundary.

Lemma 2.1. Suppose that λ1 > 0. There exists a unique solution of the system
(2.4) and (2.5) such that 0 < t1 < t2 < 1 and α0 = 0 if and only if λ2 > 0 and
µ2 = φ2(λ1, λ2), where

φ2(λ1, λ2) :=

λ2
1 − t̃1

t̃22
− λ1

t̃1

(1 − t̃2)2

λ2
1 − t̃2

t̃21
− λ1

t̃2

(1 − t̃1)2

− 1,

and
(

t̃1, t̃2
)

is the unique solution of the system

(2.8)
1 − t1

t22(t2 − t1)
= 1 + λ1,

1 − t2

t21(t2 − t1)
=

λ1

λ2
(1 + λ2) , 0 < t1 < t2 < 1.

Lemma 2.2. Suppose that λ1 > 0. There exists a unique solution of the system
(2.4) and (2.6) such that 0 < t1 < t2 < 1 and α3 = 0 if and only if λ2 > 0 and
µ1 = φ1(λ1, λ2) := φ2(λ2, λ1).

Proof. Let us prove Lemma 2.1. The proof of Lemma 2.2 is similar and will
be omitted. When α0 = 0 the equations (2.4) and (2.5) simplify to (2.8) and

µ2 =

λ2
1 − t1

t22
− λ1

t1

(1 − t2)2

λ2
1 − t2

t21
− λ1

t2

(1 − t1)2

− 1.

From the first equation in (2.8), one obtains

t1(t2) =
(1 + λ1)t

3
2 − 1

(1 + λ1)t22 − 1
.

Since λ1 > 0, function t1(t2) has only one real zero t2 =
1

3
√

1 + λ1

and one

positive real pole t2 =
1√

1 + λ1

, where

0 <
1√

1 + λ1

<
1

3
√

1 + λ1

< 1.

Moreover, t1(0) = t1(1) = 1, t1(t2) = t2 iff t2 = 1, and t1(t2) is monotonically
increasing. Namely,

d

dt2
t1(t2) =

(1 + λ1)t2(2 − 3t2 + (1 + λ1)t
3
2)

((1 + λ1)t22 − 1)2
> 0, t2 ∈ (0, 1].
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The condition 0 < t1(t2) < t2 < 1 is thus fulfilled iff t2 ∈
(

1
3
√

1 + λ1

, 1

)

. By

substituting t1(t2) into the second equation in (2.8) it simplifies to

(t2 − 1)g(t2) = 0, g(t2) := λ2 −
λ1(1 + λ2)((1 + λ1)t

3
2 − 1)2

((1 + λ1)t22 − 1)3
.

Now,

g

(

1
3
√

1 + λ1

)

= λ2, g(1) = −1,

and the sign of the derivative

d

dt2
g(t2) =

6λ1(1 + λ1)(1 + λ2)t2(t2 − 1)((1 + λ1)t
3
2 − 1)

((1 + λ1)t22 − 1)4

is equal to the sign of 1 + λ2 for t2 ∈
(

1
3
√

1 + λ1

, 1

)

. Therefore a unique

t̃2 ∈
(

1
3
√

1 + λ1

, 1

)

that solves g(t̃2) = 0 exists iff λ2 > 0. Then
(

t̃1, t̃2
)

:=
(

t1(t̃2), t̃2
)

is the unique solution of the system (2.8), which concludes the proof.

Let us now define two additional functions that will play a major role in the
formulation of main results, namely

φ3(λ1, λ2, µ1) :=
λ2µ1

λ1(λ2µ1 − 1 −√
1 + µ1)

,

φ4(λ1, λ2, µ1) :=
λ2µ1(λ2µ1(1 + 2λ1) − 2λ1)

λ2
1(λ2µ1 − 1)2

.

The next lemma collects some of their properties that can easily be verified.

Lemma 2.3. Suppose that λ1 > 0, λ2 < 0 and µ1 > 0. Then φ3(λ1, λ2, .) and
φ4(λ1, λ2, .) are monotonically increasing functions of µ1,

lim
µ1→∞

φ3(λ1, λ2, µ1) =
1

λ1
, lim

µ1→∞
φ4(λ1, λ2, µ1) =

1 + 2λ1

λ2
1

,

and φ3(λ1, λ2, .) < φ4(λ1, λ2, .). Moreover φ3(λ1, λ2, µ1) = µ2 if and only if
φ4(λ2, λ1, µ2) = µ1, and φ4(λ1, λ2, µ1) = µ2 if and only if φ3(λ2, λ1, µ2) = µ1.

The following results now give sufficient conditions on data points and tangent
directions that imply the existence of the interpolant PPPPPPPPP . The first assertion
covers convex data, and the second one covers data with an inflection point.

Theorem 2.4. Suppose that the data ddddddddd0, TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3, ddddddddd3 satisfy

λk > 0, δk > 0, µk > 0, k = 1, 2.

If
0 < µ1 < φ1(λ1, λ2) and 0 < µ2 < φ2(λ1, λ2),
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or
µ1 > φ1(λ1, λ2) and µ2 > φ2(λ1, λ2),

then the interpolating curve PPPPPPPPP that satisfies (1.2) exists.

Theorem 2.5. Suppose that the data ddddddddd0, TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3, ddddddddd3 satisfy

λ1 > 0, λ2 < 0, δ1 > 0 and δ2 > 0.

If µ1 > 0 and
φ3(λ1, λ2, µ1) < µ2 < φ4(λ1, λ2, µ1),

then the interpolating curve PPPPPPPPP that satisfies (1.2) exists.

Remark 2.3. The symmetry of equations (2.4)-(2.6) implies that Theorem
2.5 holds also if the role of λ1, λ2, and µ1, µ2 is reversed.

3 Proof of Theorem 2.4 and Theorem 2.5

The key part of the proof is the following observation.

Lemma 3.1. Suppose that the assumptions of Theorem 2.4 or Theorem 2.5
are met. Then the system (2.4)–(2.6) cannot have a solution arbitrary close to
the boundary ∂D.

Proof. By passing to the limit mentioned by Remark 2.2 in the discus-
sion [6, Section 4] one can check that only two possible cases ∆ti → 0 are
to be considered. The first one, ∆t0 → 0 and ∆t1 → 0, implies λ1λ2 < 0

and λ1 → 1

µ2
+

λ1(1 +
√

1 + µ1)

λ2µ1
or equivalently µ2 → φ3(λ1, λ2, µ1). Simi-

larly, the second one, ∆t1 → 0 and ∆t2 → 0, implies λ1λ2 < 0 too, and

λ1 → λ1

λ2µ1
+

1 +
√

1 + µ2)

µ2
or equivalently µ2 → φ4(λ1, λ2, µ1). The assertion

follows now from Lemma 2.1 and Lemma 2.2.

A standard degree type argument will now conclude the proofs. Let us first
show that the number of admissible solutions for the particular data that satisfy
the conditions of theorems is odd. The data points are chosen as

TTTTTTTTT 0 =

(

−4
−4

)

, TTTTTTTTT 1 =

(

0
0

)

, TTTTTTTTT 2 =

(

4
0

)

, TTTTTTTTT 3 =

(

9 + (−1)s

(−1)s4

)

, s ∈ {0, 1},

where s = 1 corresponds to the convex case and s = 0 to the other one. Further,
the tangent directions are chosen as

data 1: ddddddddd0 = (2, 3)T , d3 = (2,−3)T , s = 1,

data 2: ddddddddd0 = (−2, 2)T , d3 = (−2,−2)T , s = 1,

data 3: ddddddddd0 = (−2, 2)T , d3 = (−1, 2)T , s = 0.
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Table 3.1: The constants for the particular data.

λ1 λ2 µ1 µ2 δ1 δ2

data 1 2 2 3 3 4 4

data 2 2 2 1
2

1
2 1 1

data 3 1
2 − 1

2
1
2

1
2 1 1

Table 3.2: The admissible solutions for the particular data.

t1 t2 α0 α3 multiplicity

data 1 1
3

2
3

3
2

3
2 3

data 2 1
3 (3 −

√
3)

√
3

3 3(1 +
√

3) 3(1 +
√

3) 1

data 3 0.450047 0.583425 12.1642 12.1828 1

Table 3.1 shows the values of the constants (2.7) and Table 3.2 gives the corre-
sponding admissible solutions in D. Since φ1(λ1, λ2) = φ2(λ1, λ2) = 2.80828 for
data 1 and data 2, and

φ3(λ1, λ2, µ1) = 10 − 4
√

6 < µ2 =
1

2
< φ4(λ1, λ2, µ1) =

24

25

for data 3, the assumptions of theorems are fulfilled.
A homotopy will now be used to carry the conclusions from the particular case

outlined in Table 3.1 to the general one. Let us denote the system (2.4)–(2.6)
by FFFFFFFFF (ttttttttt, ααααααααα; λλλλλλλλλ, δδδδδδδδδ, µµµµµµµµµ) = 000000000, where

ttttttttt = (t1, t2), ααααααααα = (α1, α2), λλλλλλλλλ = (λ1, λ2), δδδδδδδδδ = (δ1, δ2), µµµµµµµµµ = (µ1, µ2).

Further, let (λλλλλλλλλ, δδδδδδδδδ, µµµµµµµµµ) stand for general data, and (λλλλλλλλλ∗
, δδδδδδδδδ

∗
, µµµµµµµµµ∗) for the particular

case. A homotopy is chosen as HHHHHHHHH(ttttttttt, ααααααααα; ζ) := FFFFFFFFF (ttttttttt, ααααααααα; λλλλλλλλλ(ζ), δδδδδδδδδ(ζ), µµµµµµµµµ(ζ)), where

λλλλλλλλλ(ζ) := (1 − ζ)λλλλλλλλλ∗ + ζλλλλλλλλλ, δδδδδδδδδ(ζ) := (1 − ζ)δδδδδδδδδ∗ + ζδδδδδδδδδ,

and µk : [0, 1] → R satisfies µk(0) = µ∗
k, µk(1) = µk for k = 1, 2. As is [6, Sec-

tion 6] it is straightforward to see that µk(·), k = 1, 2, can be chosen as contin-
uous piecewise linear functions so that the data with constants λλλλλλλλλ(ζ), δδδδδδδδδ(ζ) and
µµµµµµµµµ(ζ) meet the requirements of Theorem 2.4 or Theorem 2.5 for any ζ ∈ [0, 1].
Therefore, by Lemma 3.1, there exists a compact set K ⊂ D so that

S := {(ttttttttt, ααααααααα) ∈ D; HHHHHHHHH(ttttttttt, ααααααααα; ζ) = 000000000, ζ ∈ [0, 1]} ⊂ K, S ∩ ∂K = ∅.
A Brouwer’s degree ([7]) of HHHHHHHHH on K is thus invariant for all ζ ∈ [0, 1]. But since
it is odd for the particular map FFFFFFFFF (·, ·; λλλλλλλλλ∗, δδδδδδδδδ∗, µµµµµµµµµ∗), equations FFFFFFFFF (ttttttttt, ααααααααα; λλλλλλλλλ, δδδδδδδδδ, µµµµµµµµµ) = 000000000
must have at least one admissible solution and Theorem 2.4 and Theorem 2.5
are proved.
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4 The G1 spline curve

We tackle now the G1 cubic spline interpolation as introduced in Section 1,
with tangent directions in (1.2) considered to be unknown. Each tangent direc-
tion ddddddddd3ℓ depends on one parameter only. If vectors ∆TTTTTTTTT 3ℓ−1 and ∆TTTTTTTTT 3ℓ are not
collinear, i.e., D3ℓ−1,3ℓ 6= 0, we may express them as

ddddddddd0 := ddddddddd0(ξ0) := (ξ0 − 1)∆TTTTTTTTT 1 + ξ0∆TTTTTTTTT 0,

ddddddddd3ℓ := ddddddddd3ℓ(ξℓ) := σ3ℓ(1 − ξℓ)∆TTTTTTTTT 3ℓ−1 + σ3ℓ−1ξℓ∆TTTTTTTTT 3ℓ,

ddddddddd3m := dddddddddm(ξm) := (1 − ξm)∆TTTTTTTTT 3m−1 − ξm∆TTTTTTTTT 3m−2,

ℓ = 1, . . . , m − 1,(4.1)

with

σk := sign

(

Dk−1,k

Dk,k+1

)

.

The tangents introduced in (4.1) are not normalized, but by Remark 2.1 this is
not important. Further, the definition (4.1) implies that some constants defined
in (2.7) become explicit functions of ξℓ. In particular,

δ2ℓ−1 = δ2ℓ−1(ξℓ−1) =
1

1 − ξℓ−1

∣

∣

∣

∣

D3ℓ−3,3ℓ−2

D3ℓ−4,3ℓ−3

∣

∣

∣

∣

, ℓ = 2, 3, . . . , m,

δ2ℓ = δ2ℓ(ξℓ) =
1

ξℓ

∣

∣

∣

∣

D3ℓ−2,3ℓ−1

D3ℓ−1,3ℓ

∣

∣

∣

∣

, ℓ = 1, 2, . . . , m − 1,(4.2)

δ1 = δ1(ξ0) =
1

1 − ξ0
, δ2m = δ2m(ξm) =

1

ξm

,

shows that a requirement δ2ℓ(ξℓ) > 0, δ2ℓ+1(ξℓ) > 0 pins down ξℓ to (0, 1) as can
be seen in Figure 4.1. The constants µ2ℓ−1, µ2ℓ turn out as

T3 k-2

T3 k-1

T3 k

T3 k+1

T3 k+2

d3 kHΞkL

T3 k-2

T3 k-1 T3 k

T3 k+1

T3 k+2

d3 kHΞkL

T3 k-2

T3 k-1 T3 k

T3 k+1

T3 k+2

d3 kHΞkL

T3 k-2

T3 k-1 T3 k

T3 k+1 T3 k+2

d3 kHΞkL

Figure 4.1: The tangent directions ddddddddd3k(ξk) for ξk ∈ (0, 1) (gray area).
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µ2ℓ−1 = µ2ℓ−1(ξℓ−1) = σ3ℓ−4ξℓ−1δ2ℓ−1(ξℓ−1) +
D3ℓ−4,3ℓ−2

D3ℓ−4,3ℓ−3
, ℓ = 2, 3, . . . , m,

µ2ℓ = µ2ℓ(ξℓ) = σ3ℓ (1 − ξℓ) δ2ℓ(ξℓ) +
D3ℓ−2,3ℓ

D3ℓ−1,3ℓ

, ℓ = 1, 2, . . . , m − 1,(4.3)

µ1 = µ1(ξ0) =
ξ0

1 − ξ0
, µ2m = µ2m(ξm) =

1 − ξm

ξm

.

In view of Theorem 2.4 or Theorem 2.5 it is necessary to determine for which
ξℓ ∈ (0, 1) the functions µ2ℓ and µ2ℓ+1 are both positive. Let us recall the
notation f (I) := {f(x); x ∈ I}, f−1 (I) := {x; f(x) ∈ I}. Then

I0 := µ−1
1 ((0,∞)) ∩ (0, 1) = (0, 1),

Iℓ := µ−1
2ℓ ((0,∞)) ∩ µ−1

2ℓ+1 ((0,∞)) ∩ (0, 1), ℓ = 1, 2, . . . , m − 1,

Im := µ−1
2m ((0,∞)) ∩ (0, 1) = (0, 1),

are the required subintervals, with Iℓ 6= ∅ still to be assured. Let us restrict
ourselves to the interval (0, 1) only. It is easy to see that µ2ℓ and µ2ℓ+1 are both
monotone as functions of ξℓ. Moreover,

lim
ξ↓0

µ2ℓ(ξℓ) = σ3ℓ ∞, µ2ℓ(1) =
D3ℓ−2,3ℓ

D3ℓ−1,3ℓ

,

µ2ℓ+1(0) =
D3ℓ−1,3ℓ+1

D3ℓ−1,3ℓ

, lim
ξ↑1

µ2ℓ+1(ξℓ) = σ3ℓ−1 ∞.

Therefrom it is easy to see that µ−1
2ℓ ((0,∞)) ∩ (0, 1) = ∅ iff

σ3ℓ = −1, D3ℓ−2,3ℓD3ℓ−1,3ℓ ≤ 0,(4.4)

and µ−1
2ℓ+1 ((0,∞)) ∩ (0, 1) = ∅ iff

σ3ℓ−1 = −1, D3ℓ−1,3ℓ+1D3ℓ−1,3ℓ ≤ 0.(4.5)

Now, if conditions (4.4) and (4.5) are not fulfilled, each of the above intervals is
nonempty, but that does not imply the intersection to be nonempty too. In this
case it is easy to check that µ−1

2ℓ ((0,∞))∩µ−1
2ℓ+1 ((0,∞))∩ (0, 1) = ∅ if and only

if

D3ℓ−2,3ℓ−1D3ℓ,3ℓ+1 > 0, D3ℓ−2,3ℓD3ℓ−1,3ℓ+1 > 0,(4.6)

D3ℓ−2,3ℓD3ℓ,3ℓ+1 < 0, σ3ℓ µ−1
2ℓ (0) ≤ σ3ℓ µ−1

2ℓ+1(0).

Let us summarize this discussion in the following theorem.

Theorem 4.1. Suppose that data points (1.1) satisfy

λ2ℓ−1 > 0, λ2ℓ > 0 or λ2ℓ−1λ2ℓ < 0, ℓ = 1, 2, . . . , m,

D3ℓ−1,3ℓ 6= 0, ℓ = 1, 2, . . . , m − 1,
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and additionally none of the relations (4.4), (4.5) or (4.6) is fulfilled. Further,
let the tangents be given by (4.1), and the rest of the constants determined by
(4.2) and (4.3). Then for every ξℓ ∈ Iℓ, ℓ = 0, 1, . . . , m, the suppositions of
either Theorem 2.4 or Theorem 2.5 are fulfilled on ℓ-th segment. Further, the
algorithm ForwardSweep determines the admissible intervals for parameters ξℓ.

Only the algorithm is left to be constructed. We choose it to be a simple back-
tracking procedure that traverses the data (1.1) in a forward sweep TTTTTTTTT 0 → TTTTTTTTT 3m

and determines an intermediate result

Ξℓ ⊂ Iℓ, ℓ = 0, 1, . . . , m,

in such a way that for any ξℓ ∈ Ξℓ there exists a choice

ξi ∈ Ξi, i = 0, 1, . . . , ℓ − 1,

such that (ξ0, ξ1, . . . , ξℓ) is admissible as far as data TTTTTTTTT i, i = 0, 1, . . . , 3ℓ, are
concerned. A backward sweep TTTTTTTTT 3m → TTTTTTTTT 0 shrinks the temporary Ξℓ, ℓ = m −
1, m− 2, . . . , 0 so that for any ξℓ ∈ Ξℓ there exists a choice

ξi ∈ Ξi, i = 0, 1, . . . , ℓ − 1, ℓ + 1, . . . , m,

such that (ξ0, ξ1, . . . , ξm) is admissible for all data. The induction step Ξℓ−1 →

T3 l-3

T3 l-2

T3 l-1

T3 l

T3 l-4

T3 l+1

T3 l-3

T3 l-2 T3 l-1
T3 l

T3 l-4

T3 l+1

Figure 4.2: Induction step: λ2ℓ−1 > 0, λ2ℓ > 0 (left), and λ2ℓ−1λ2ℓ < 0 (right).

Ξℓ or Ξℓ−1 → Ξℓ has two forms (Fig. 4.2), based upon Theorem 2.4 and Theo-
rem 2.5 respectfully. The case λ2ℓ−1 > 0 and λ2ℓ > 0 is easy to handle since the
restrictions on tangent directions depend only on data points, more precisely on

φ1,ℓ−1 := φ1(λ2ℓ−1, λ2ℓ), φ2,ℓ := φ2(λ2ℓ−1, λ2ℓ), ℓ = 1, 2, . . . , m.

The case λ2ℓ−1λ2ℓ < 0 is more complex since the existence conditions connect
left and right tangent direction. For this reason, we introduce two additional
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maps, R1,ℓ (I), R2,ℓ (I), where I is an open or closed interval with endpoints a

and b. For λ2ℓ−1 > 0 and λ2ℓ < 0 the definition reads

R1,ℓ (I) := R1,ℓ (I; λ2ℓ−1, λ2ℓ)

:=

{

∅; b ≤ 0 ∨ I = ∅,
(φ3 (λ2ℓ−1, λ2ℓ, (a)+) , φ4 (λ2ℓ−1, λ2ℓ, b)) ; b > 0,

R2,ℓ (I) := R2,ℓ (I; λ2ℓ−1, λ2ℓ)

:=















∅; b ≤ 0 ∨ a ≥ 1+2λ2ℓ−1

λ2

2ℓ−1

∨ I = ∅,
(φ3 (λ2ℓ, λ2ℓ−1, (a)+) , φ4 (λ2ℓ, λ2ℓ−1, b)) ; b < 1

λ2ℓ−1

,

(φ3 (λ2ℓ, λ2ℓ−1, (a)+) ,∞) ; b ≥ 1
λ2ℓ−1

,

and for λ2ℓ−1 < 0, λ2ℓ > 0 is given as

R1,ℓ (I) := R2,ℓ (I; λ2ℓ, λ2ℓ−1) ,

R2,ℓ (I) := R1,ℓ (I; λ2ℓ, λ2ℓ−1) .

Recall Theorem 2.5 and Lemma 2.3. The meaning of R1,ℓ and R2,ℓ is the fol-
lowing. Suppose that µ2ℓ−1, µ2ℓ are confined to intervals, i.e., µ2ℓ−1 ∈ (a1, b1)
and µ2ℓ ∈ (a2, b2). Then for every µ2ℓ−1 ∈ (a1, b1) ∩ R2,ℓ ((a2, b2)) there
exists at least one admissible µ2ℓ ∈ (a2, b2). Equivalently, for every µ2ℓ ∈

a1 b1

Μ1
a2

b2

Μ2

Φ3HΛ1,Λ2, Μ1L

Φ4HΛ1,Λ2, Μ1L

1 + 2 Λ1
����������������������
HΛ1L

2

1
��������
Λ1

Figure 4.3: Geometric interpretation of R1,ℓ and R2,ℓ for ℓ = 1. Every point (µ1, µ2)
in the gray area is admissible.

(a2, b2)∩R1,ℓ ((a1, b1)) there is at least one admissible µ2ℓ−1 ∈ (a1, b1) (Fig. 4.3).
Now, we can write the algorithm that should be called as

1. solution := ∅;
2. Ξ := (I0);
3. ForwardSweep(m, Ξ, 1, solution);

procedure ForwardSweep(m, Ξ, ℓ, solution)
1. S := ForwardSplit(Ξ, ℓ);
2. for i = 1, i ≤ length(S), i = i + 1
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3. Ξℓ := Si;
4. if ℓ = m then BackwardSweep(m, Ξ, ℓ, solution);
5. else ForwardSweep(m, Ξ, ℓ + 1, solution);

procedure BackwardSweep(m, Ξ, ℓ, solution)
1. Ξℓ−1 := BackwardSplit(Ξ, ℓ);
2. if Ξℓ−1 6= ∅
3. if ℓ = 1 then solution := solution ∪ {Ξ};
4. else BackwardSweep(m, Ξ, ℓ − 1, solution);

procedure ForwardSplit(Ξ, ℓ)
1. S := ∅; I := µ2ℓ−1(Ξℓ−1); J := ∅;
2. if λ2ℓ−1 > 0 and λ2ℓ > 0 then

3. if I ≤ φ1,ℓ−1 then J := {(0, φ2,ℓ)};
4. else if I ≥ φ1,ℓ−1 then J := { (φ2,ℓ,∞) };
5. else J := { (0, φ2,ℓ), (φ2,ℓ,∞) };
6. else if λ2ℓ−1 · λ2ℓ < 0 then

7. J := {R1,ℓ (I; λ2ℓ−1, λ2ℓ)};
8. for i = 1, i ≤ length(J ), i = i + 1
9. if I := µ−1

2ℓ (Ji) ∩ Iℓ 6= ∅ then S = S ∪ {I};
10. Return S

procedure BackwardSplit(Ξ, ℓ)
1. I := µ2ℓ(Ξℓ); J := ∅;
2. if λ2ℓ−1 > 0 and λ2ℓ > 0 then

3. if I ≤ φ2,ℓ then J := (0, φ1,ℓ−1);
4. if I ≥ φ2,ℓ then J := (φ1,ℓ−1,∞);
5. else if λ2ℓ−1 · λ2ℓ < 0 then

6. J := R2,ℓ (I; λ2ℓ−1, λ2ℓ);
7. Return µ−1

2ℓ−1(J ) ∩ Ξℓ−1;

The result of the algorithm ForwardSweep is a set called solution. It may be
empty, if no admissible directions were found. If not, the elements of solution are
vectors Ξ = (Ξℓ)

m
ℓ=0, where each Ξ gives at least one admissible set of parameters

ξℓ ∈ Ξℓ, ℓ = 0, 1, . . . , m. A brief look at Theorem 2.4 reveals that the result in
the convex case is much stronger.

Corollary 4.2. Suppose that the assumptions of Theorem 4.1 hold. Let

λ2ℓ−1 > 0, λ2ℓ > 0, ℓ = 1, 2, . . . , m,

and let Ξ be a vector of intervals, returned by ForwardSweep. Any choice of
parameters

(ξ0, ξ1, . . . , ξm) , ξℓ ∈ Ξℓ,

is admissible.

Even in the general case, there is a natural way to generate admissible choices,
based upon the following consequence.
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Corollary 4.3. Suppose that the assumptions of Theorem 4.1 hold. Let
Ξ be a vector of intervals, returned by ForwardSweep. For any r, 0 ≤ r ≤
m, and any chosen ξr ∈ Ξr, one can find at least one admissible selection
(ξ0, . . . , ξr−1, ξr, ξr+1, . . . , ξm), ξℓ ∈ Ξℓ.

Let us now pick r, 1 ≤ r ≤ m−1, and choose ξr ∈ Ξr. This means that Ξr has
been in Ξ replaced by [ξr, ξr]. Corollary 4.3 for this new Ξ does not necessarily
hold. But a call

BackwardSweep(r, Ξ, r, solution)

shrinks properly the intervals Ξr−1, Ξr−2, . . . , Ξ0, and so does the mirror image
of BackwardSweep on the intervals Ξr+1, Ξr+2, . . . , Ξm. This brings the property
of vector Ξ, described in Corollary 4.3, to each of its parts (Ξℓ)

r
ℓ=0 and (Ξℓ)

m
ℓ=r.

So the whole step can be repeated on both parts separately. This divide et
impera procedure can be repeated until we are left with an admissible solution.
It adds at most a factor O(m) to the complexity of ForwardSweep.

Once the bounds Ξ have been determined, one has to choose the actual tan-
gent directions. If ddddddddd3ℓ are prescribed, Corollary 4.2 or the algorithm based upon
Corollary 4.3 determines if the interpolation problem (1.2) and (1.3) has a solu-
tion. The same approach would work if the directions are approximated as

ddddddddd3ℓ = ddddddddd3ℓ

(

γℓξℓ
+ (1 − γℓ) ξℓ

)

, Ξℓ =
(

ξ
ℓ
, ξℓ

)

or Ξℓ =
[

ξ
ℓ
, ξℓ

]

,

where γℓ may be determined by some local approximation scheme from the data
(1.1) or simply chosen as a constant. Also, with the help of Ξ, one may look
for a G2 spline curve with ddddddddd3ℓ determined implicitly as a solution of the system
(1.4).

Let us conclude the paper with some numerical evidence. Fig 4.4 (a)–(b)
shows a comparison between G2 (dashed) and G1 spline curve with tangent
directions prescribed by γℓ = 1

2 (light gray, dark gray), a choice that yields two
solutions. Further, Fig 4.4 (c)–(d) shows G2 (dashed) and G1 spline curve, with
directions determined by local quadratic interpolating polynomials based upon
uniform (dark gray) and chord length parameterization (light gray). Note that
the differences between the curves are very small and somewhere imperceptible.
For the data in Fig 4.5 the G2 spline curve can not be found, and interpolating
polynomials based on uniform parameterization do not give admissible tangent
directions, as can easily be checked. The difference between G1 curve with γℓ = 1

2
(dark gray) and quadratic chord length approximation (light gray) is again very
small.
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(a) (b)

(c) (d)

Figure 4.4: A comparison between G1 (gray) and G2 spline curves (dashed).

Figure 4.5: The comparison between G1 spline curves at differently chosen tangent
directions.
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