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Abstract. In this paper, three-pencil lattices on triangulations are studied. The
explicit representation of a lattice, based upon barycentric coordinates, enables us
to construct lattice points in a simple and numerically stable way. Further, this
representation carries over to triangulations in a natural way. The construction is
based upon group action of S3 on triangle vertices, and it is shown that the number
of degrees of freedom is equal to the number of vertices of the triangulation.
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1. Introduction

In contrast to the univariate case, uniqueness of the solution of a mul-
tivariate Lagrange polynomial interpolation problem depends not only
on the fact that interpolation points should be distinct but also on their
actual positions. Consequently, a more detailed study of the geometry
of interpolation points is needed. Though it is well-known that the
Lagrange interpolation problem at

(n+d
d

)
interpolation points is correct

in Πd
n (the space of polynomials in d variables of total degree ≤ n) if

and only if the points do not lie on an algebraic curve of degree ≤ n,
this is hard to verify in practical computations.

Lattices are perhaps the most often used configurations of pre-
scribed interpolation points and can be traced back to [2]. They are
constructed by intersections of hyperplanes. Several generalizations fol-
lowed. Among them, principal lattices (cf. e.g. [2], [4]) are probably the
most widely met in practice. They are generated as intersections of d+1
pencils of parallel hyperplanes. In [5], these lattices have been general-
ized to the case of not necessarily parallel hyperplanes intersecting in so
called centers. These lattices are known as (d+1)-pencil lattices of order
n. Further generalizations can be found in [1]. It is well-known that all
these lattices admit correct interpolation in Πd

n since they satisfy the
GC condition (cf. [2]).
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Here we study a particular case, three-pencil lattices of order n but
extended to triangulations, the most natural subdivisions of a com-
plex (polygonal) domain. Lattices on regular triangulations, where the
points on adjacent edges coincide, are important since they provide
continuous piecewise polynomial interpolants. Recall that a triangula-
tion is regular if every pair of adjacent triangles has only a vertex or
the whole edge in common.

Although an explicit construction of a lattice on a single triangle
can already be found in [5] and later in an excellent presentation [7, pp.
195–214], in Section 2 we derived it in terms of barycentric coordinates
rather than of homogeneous ones. Namely, barycentric form turns out
to be a natural tool to extend lattices from a single triangle to a regular
triangulation since it keeps clear track of geometric properties. There
is of course a shortcut from homogeneous to barycentric form but a
straightforward approach, starting with a prescribed triangle, gives a
new insight to pencil lattices and deserves its place in the paper. In
particular, the determination of the points of a lattice reduces to a
simple and very well-known equation zn − 1 = 0. Also, the barycentric
form provides an efficient and stable way to compute the points of the
lattice.

Section 3 is devoted to lattices on regular triangulations. Explicit
conditions, which allow construction of lattices on adjacent triangles
are given. They are further extended to cells and finally to a whole
triangulation. Even more, the proof of Theorem 3 can be used as a basis
for an efficient computer algorithm. The number of free parameters is
explained in the most natural manner, by the number of vertices and
edges of a triangulation.

2. Three-pencil lattices

Suppose that PPPPPPPPP 1, PPPPPPPPP 2 and PPPPPPPPP 3 are vertices of a given triangle 4. If one is
looking for a three-pencil lattice on 4, the answer will undoubtedly de-
pend on the coordinates of PPPPPPPPP i. But a general approach should work for
any given triangle. So it is natural to switch to barycentric coordinates
corresponding to the vertices of the triangle 4, and apply a simple
transformation of coordinates for each particular case separately. Also,
the barycentric coordinates on the common edge of adjacent trian-
gles coincide, an important fact when dealing with triangulations. The
points to be determined will be indexed with respect to the barycentric
coordinates as

TTTTTTTTTn−k−j,k,j , k, j ≥ 0, k + j ≤ n,
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with known triangle vertices TTTTTTTTTn,0,0 =
[
1 0 0

]T
, TTTTTTTTT 0,n,0 =

[
0 1 0

]T
,

TTTTTTTTT 0,0,n =
[
0 0 1

]T
. Let us write the centers in barycentric form as

CCCCCCCCC0 =




1
1− ξ0

− ξ0

1− ξ0

0




, CCCCCCCCC1 =




0

1
1− ξ1

− ξ1

1− ξ1




, CCCCCCCCC2 =




− ξ2

1− ξ2

0

1
1− ξ2




, (1)

where ξi > 0 are free parameters (Figure 1). Of a particular importance

Tn,0,0

Tn-1,1,0 Tn-2,2,0 Tn-3,3,0

T0,n,0

Tn-1,0,1
Tn-2,1,1

Tn-3,2,1
T0,n-1,1

Tn-2,0,2

Tn-3,1,2

T0,n-2,2

Tn-3,0,3

T0,n-3,3

T0,0,n

C2

C1

C0

Figure 1. A three-pencil lattice of order n.

will be a constant α > 0, defined as

α := α (ξ0, ξ1, ξ2) := n
√

ξ0 ξ1 ξ2. (2)

In [5], a three-pencil lattice is determined by 3 centers, two lines that
define a vertex of a triangle, and an additional line that completely
determines the geometric construction. One can assume that this con-
struction starts at TTTTTTTTTn,0,0, with TTTTTTTTTn−1,0,1CCCCCCCCC0 as the chosen additional line.
The first step to determine the points TTTTTTTTTn−k−j,k,j is the following.

Lemma 1. Let TTTTTTTTTn−k−j,k,j , k, j ≥ 0, k + j ≤ n, be points of a three-
pencil lattice, generated by centers CCCCCCCCCi given in (1). Then

TTTTTTTTTn−k,k,0 =




τk

1− τk

0


 , k = 0, 1, . . . , n,
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where

τk := τk (ξ0) :=
αn − αk

αn − αk + (αk − 1) ξ0
, k = 0, 1, . . . , n, (3)

and α is defined in (2).

Proof. Suppose that all centers are finite, ξi 6= 1 and α 6= 1. Let us
choose ω ∈ (0, 1), so that the point

UUUUUUUUU1 :=




1− ω
0
ω




is on the edge TTTTTTTTTn,0,0TTTTTTTTT 0,0,n, and let `̀̀̀̀̀̀̀̀ denote the line connecting UUUUUUUUU1

and CCCCCCCCC0. To start with, let us assume LLLLLLLLL0 := TTTTTTTTTn,0,0, and consider the

C1

C2

L0=Tn,0,0 L1 L2 L3 T0,n,0

U1 U2
U3 Un

T0,0,n

Ln
C0

Figure 2. The “zig-zag” construction with ξ0 > 1.

following geometric construction for k = 1, 2, . . . , n (Figure 2):

− Forward step: determine a point UUUUUUUUUk as the intersection of the lines
CCCCCCCCC2LLLLLLLLLk−1 and `̀̀̀̀̀̀̀̀.

− Backward step: determine a point LLLLLLLLLk as the intersection of the
edge TTTTTTTTTn,0,0TTTTTTTTT 0,n,0 and the line CCCCCCCCC1UUUUUUUUUk.

This “zig-zag” procedure produces points

LLLLLLLLL0, UUUUUUUUU1, LLLLLLLLL1, . . . , UUUUUUUUUn, LLLLLLLLLn, (4)

that are clearly part of a three-pencil lattice for some triangle since
each is determined as an intersection of lines from all the centers. We
proceed to find a unique ω ∈ (0, 1) such that the points (4) are the
lattice points for the given 4, i.e., the equation

LLLLLLLLLn = TTTTTTTTT 0,n,0 (5)

NA-Lattice-revision.tex; 18/01/2007; 16:34; p.4



Three-pencil lattices on triangulations 5

is satisfied. This is the key point of our algebraic construction. Since
the points LLLLLLLLLk lie on the edge TTTTTTTTTn,0,0TTTTTTTTT 0,n,0, their barycentric coordinates
are

LLLLLLLLLk =




φk(ω)
1− φk(ω)

0


 , k = 0, 1, . . . , n,

with φ0(ω) := 1. The forward step computes the intersection UUUUUUUUUk as

UUUUUUUUUk = µkCCCCCCCCC2 + (1− µk)LLLLLLLLLk−1 = ρkUUUUUUUUU1 + (1− ρk)CCCCCCCCC0, (6)

and an elimination from the right-hand side equation yields

µk =
ω (1− ξ2) ((ξ0 − 1)φk−1(ω) + 1)

ω (1− ξ2) (ξ0 − 1) (φk−1(ω)− 1) + ξ0
,

ρk =
1

ω (1− ξ2)
µk.

(7)

Similarly, the backward step determines LLLLLLLLLk as

LLLLLLLLLk = γkCCCCCCCCC1 + (1− γk)UUUUUUUUUk, (8)

with UUUUUUUUUk given by (6), and ρk by (7). However, the third component of
LLLLLLLLLk is 0, which implies

γk =
(ξ1 − 1)µk

(ξ1 − 1)µk + ξ1 (ξ2 − 1)
.

But then the first component of (8) reveals the recurrence relation for
φk(ω),

φk(ω) =
aφk−1(ω) + b

c φk−1(ω) + d
, φ0(ω) := 1, (9)

where the coefficient matrix is obtained as
[
a b
c d

]
:=

[
ξ1 (ωξ2 − (ω − 1)ξ0) −ωξ1ξ2

ω (ξ0 − 1) (1− ξ1ξ2) ω + ξ1 (ωξ2 (ξ0 − 1)− (ω − 1)ξ0)

]
.

The difference equation (9) admits a closed form solution (cf. [6, p.
146])

φk(ω) =
ψ(ω)k − ξ0ξ1ξ2

(1− ξ0) ψ(ω)k + ξ0 (1− ξ1ξ2)
, (10)

where
ψ(ω) :=

(1− ω + ωξ2) ξ0ξ1

ω + (1− ω)ξ1ξ3
. (11)

The numerator and the denominator in (10) have clearly no common
root ψ(ω)k, and the equation (5) simplifies to

ψ(ω)n − ξ0ξ1ξ2 = ψ(ω)n − αn = 0.
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But this is a well-known equation with solutions proportional to the
roots of unity,

ψ(ω) = α e
2πi
n

k, k = 1, 2, . . . , n,

and with precisely one positive real root ψ(ω) = α 6= 1. From (11), it
is now straightforward to derive

ω = ψ−1 (α) =
1

1 +
1

ξ0ξ1

αn − α

α− 1

.

Obviously, 0 < ω < 1, even if α → 1, since then

αn − α

α− 1
=

n−2∑

j=0

αj+1 → n− 1, ω → 1
1 + (n− 1) ξ2

.

Finally, the claim (3) is confirmed by simplifying τk = φk

(
ψ−1 (α)

)
.

Note that the expression (3) makes sense as α → 1 too, namely

αk − 1
αn − αk

=

k−1∑
j=0

αj

n−1−k∑
j=0

αn−1−j

→ k

n− k
, 0 ≤ k ≤ n− 1,

and

τk → n− k

n− k + k ξ0
, k = 0, 1, . . . , n.

This concludes the proof of the lemma. 2

The following theorem reveals the whole lattice.

Theorem 1. Suppose that the centers CCCCCCCCCi of a three-pencil lattice are
prescribed by ξi as in (1), and that the corresponding α is determined
by (2). Let vi := αi, wi :=

∑i−1
j=0 vj , i = 0, 1, . . . , n. The points of a

three-pencil lattice of order n are given as

TTTTTTTTTn−k−j,k,j =




vk+jwn−k−j

vk+jwn−k−j + (vjwk + wjξ1) ξ0

vn−kwk

vn−kwk + (vn−k−jwj + wn−k−jξ2) ξ1

vn−jwj

vn−jwj + (vkwn−k−j + wkξ0) ξ2




. (12)
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Proof. Let us prove (12) constructively. Consider Figure 1. The point
TTTTTTTTT 0,n−j,j is clearly determined by the line CCCCCCCCC2TTTTTTTTT j,n−j,0, and it is enough
to compute the second component only. With the help of Lemma 1 and
(3), it turns out that

(
αn − αj

)
ξ0ξ2

αn (αj − 1) + (αn − αj) ξ0ξ2
=

αn − αj

αn − αj + (αj − 1) ξ1
= τj (ξ1) ,

since ξ0ξ1ξ2 = αn. Similarly, the third component of the point
TTTTTTTTTn−k−j,0,k+j , determined by the line CCCCCCCCC1TTTTTTTTTn−k−j,k+j,0, is

(
αk+j − 1

)
ξ0ξ1

αn − αk+j + (αk+j − 1) ξ0ξ1
=

αn − αn−k−j

αn − αn−k−j + (αn−k−j − 1) ξ2
= τn−k−j (ξ2) .

The lines CCCCCCCCC2TTTTTTTTTn−k,k,0 and CCCCCCCCC1TTTTTTTTTn−k−j,0,k+j are not parallel, so they meet
at some point which is the lattice point TTTTTTTTTn−k−j,k,j ,

TTTTTTTTTn−k−j,k,j =




αn − αk+j

αn − αk+j + (αk+j − αj + (αj − 1) ξ1) ξ0

αn − αn−k

αn − αn−k + (αn−k − αn−k−j + (αn−k−j − 1) ξ2) ξ1

αn − αn−j

αn − αn−j + (αn−j − αk + (αk − 1) ξ0) ξ2




,

(13)
iff it lies on the line CCCCCCCCC0TTTTTTTTT 0,n−j,j too. In order to show this, one may
base the argument on Pappus’ theorem (cf. e.g. [3, Axiom 14.15]). The
substitution stated in the theorem and (13) conclude the proof. 2

The points TTTTTTTTTn−k−j,k,j can be computed efficiently and stably, avoid-
ing any cancellations. Indeed, one is able to obtain vi, wi, i = 0, 1, . . . , n,
in 2n +O(1) floating point operations only.

3. Lattices on triangulations

The three-pencil lattice, given in Theorem 1, can easily be extended
to a regular triangulation in a continuous way (see Figure 6). Namely,
every two adjoining triangles have to share all the lattice points on the
common edge. This implies some relations between the center positions
which are revealed in the following theorem.
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Theorem 2. Let 4 and 4′ be given triangles, and let the correspond-
ing three-pencil lattices be determined by parameters ξi and ξ′i, respec-
tively. Barycentric coordinates of lattice points at edges TTTTTTTTTn,0,0TTTTTTTTT 0,n,0

and TTTTTTTTT ′n,0,0TTTTTTTTT
′
0,n,0 agree iff

ξ0ξ
′
1ξ
′
2 = ξ′0ξ1ξ2,

in the case n = 2, and

ξ1ξ2 = ξ′1ξ
′
2, ξ0 = ξ′0, (α′ = α), or ξ0ξ

′
1ξ
′
2 = 1, ξ′0ξ1ξ2 = 1,

(
α′ =

1
α

)
,

for n ≥ 3.

Proof. One has to verify

TTTTTTTTTn−k,k,0 = TTTTTTTTT ′n−k,k,0, k = 1, 2, . . . , n− 1, (14)

only. But then (3) simplifies (14) to

αk − 1
αn − αk

ξ0 =
α′ k − 1

α′n − α′ k
ξ′0, k = 1, 2, . . . , n− 1. (15)

Since the case n = 2 is straightforward, let n ≥ 3. Dividing equations
in (15) for k = 1 and k = 2 leads to f(α) = f(α′), where

f(α) =
α (αn−2 − 1)

(α + 1) (αn−1 − 1)
=

∑n−2
j=1 αj

∑n−1
j=1 (αj + αj−1)

.

It is easy to verify that f(α) = f(1/α), thus α′ = α or α′ = 1/α.
We have to see that there are no other positive solutions. Since f is
nonnegative, it is enough to prove that f(α) = c, c ≥ 0, has at most two
positive solutions. Since α > 0, the equation c− f(α) = 0 is equivalent
to




n−1∑

j=1

(
αj + αj−1

)

 (c− f(α)) = c +

n−2∑

j=1

(2 c− 1) αj + c αn−1 = 0.

Then the Descartes’ rule of signs shows that there are at most two roots
in [0,∞). The relation (15) for k = 1 now gives the desired results stated
in the theorem. It can also be easily checked that all solutions satisfy
(15) for any suitable k as well. 2

Let us simplify the notation and denote the vertices TTTTTTTTTn,0,0, TTTTTTTTT 0,n,0,
TTTTTTTTT 0,0,n, by 1, 2, 3, respectively. Consider the following example. Let ξ0 =

NA-Lattice-revision.tex; 18/01/2007; 16:34; p.8
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1

2

3

1’

2’

3’

1

2

3

1’

2’

3’

1

2

3

1’

2’

3’

Figure 3. The lattices obtained for parameters ξ′1 = 1
3
, 1, 3 and the transformation

α → α.

1

2

3

1’

2’

3’

1

2

3

1’

2’

3’

1

2

3

1’

2’

3’

Figure 4. The lattices obtained for parameters ξ′1 = 1
3
, 1, 3 and the transformation

α → 1/α.

5/4, ξ1 = 2 and ξ2 = 2/3. The relations between ξ′1 and ξ′2, outlined
in Theorem 2, for the transformations α → α and α → 1/α, are ξ′2 =
4

3ξ′1
, ξ′2 = 4

5ξ′1
, respectively. In Figure 3 and Figure 4, the lattices that

correspond to points ξ′1 = 1
3 , 1, 3 are presented for both cases.

Theorem 2 gives relations which assure that the lattice points agree
on the common edge for a particular labeling of triangle vertices. But,
in order to construct a lattice on the whole triangulation, similar re-
sults for every possible pair of edges would be needed. Instead, only
Theorem 2 together with rotations and mirror maps on the labels of
the triangle vertices can be used. It is well-known that these transfor-
mations form the symmetric group S3. Reflection of the triangle around
one of the angle bisectors gives the permutations (1 2), (1 3), (2 3), and
the rotations are given by (1 2 3), (1 3 2), (1)(2)(3). The question is
how the group transformations translate the center parameters ξi. By
(1), it is easy to verify that the rotation (1 2 3) yields

ξ0 → ξ1, ξ1 → ξ2, ξ2 → ξ0, α → α, (16)

and the mirror map (1 2) gives

ξ0 → ξ−1
0 , ξ1 → ξ−1

2 , ξ2 → ξ−1
1 , α → α−1. (17)

Since S3 is generated by (1 2 3) and (1 2), other transformations of
centers can be obtained by compositions of (16) and (17). A lattice on
the given regular triangulation can now be constructed in the following
way. First, choose an arbitrary triangle and use Theorem 1 to obtain the
lattice. Then repeat the following steps until the whole triangulation is
covered:
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10 G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, E. Žagar

− add a triangle at a time, in such a way that the current subtrian-
gulation is simply connected,

− use transformations from group S3 and Theorem 2 to construct
the lattice on the new triangle.

Now, new triangles can be added in various ways. Here they will be
added so that the cells at the boundary of the current subtriangulation
will be completed in the positive direction around the cell’s inner vertex.
Note that a cell of degree m is a triangulation with exactly one inner
vertex (of the degree m).

Theorem 2 points out that each triangle added to a regular simply
connected triangulation brings in an additional free center position
unless the lattice points have already been prescribed on two edges.
This happens when a cell around an inner vertex is completed. In this
case there are two additional equations to be fulfilled. The first chosen
triangle brings 3 degrees of freedom, every other triangle adds one, and
every cell diminishes the degree by one as will be shown later on. With
the help of Euler’s formula one can conclude that a three-pencil lattice,
extended to a regular simply connected triangulation with V vertices,
has V degrees of freedom. A more detailed analysis is given in the proof
of the following theorem.

Theorem 3. Let n > 2. A three-pencil lattice on a regular simply
connected triangulation T with V vertices can be constructed by using
Theorem 2 and transformations from group S3. There are V degrees of
freedom.

Proof. By Theorem 2 the result obviously holds for two triangles.
Consider now a cell of degree m. Let the starting triangle be chosen
arbitrarily and the rest of triangles numbered consecutively in the pos-
itive direction around the cell’s inner vertex. Suppose that on the i-th
triangle a lattice is given by parameters ξ

(i)
0 , ξ

(i)
1 , ξ

(i)
2 , i = 1, 2, . . . , m,

where each ξ
(i)
j defines a center CCCCCCCCC

(i)
j as in the previous section. Simi-

larly, let each triangle be labeled in the positive direction starting with
the inner point of the cell (see Figure 5). The connections between
parameters ξ

(i)
j must be found so that the lattice points on common

edges will agree.
Let us choose the parameters for the first triangle as ξ

(1)
j := ξj , j =

0, 1, 2, and consider the i-th and (i + 1)-th triangle (see Figure 5). In
order to use Theorem 2 vertices of the common edge of the triangles
considered must be labeled by 1 and 2. Therefore the transformation

NA-Lattice-revision.tex; 18/01/2007; 16:34; p.10
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1 1

2
3 2

3

H i L
H i+1 L

Figure 5. Labeling of the i-th and (i + 1)-th triangle before the transformation.

(2 3) = (1 2)(1 2 3) that maps

ξ
(i)
0 → 1

ξ
(i)
2

=: ξ̃0, ξ
(i)
1 → 1

ξ
(i)
1

=: ξ̃1, ξ
(i)
2 → 1

ξ
(i)
0

=: ξ̃2,

must first be used on the labels of the vertices of the i-th triangle. Now,
Theorem 2 gives two options, α → 1

α and α → α. In the first case the
required equations are fulfilled iff

ξ
(i+1)
0 =

1
ξ̃1ξ̃2

= ξ
(i)
0 ξ

(i)
1 , ξ

(i+1)
1 = σi, ξ

(i+1)
2 =

1
σiξ̃0

=
ξ
(i)
2

σi
, (18)

and in the second case iff

ξ
(i+1)
0 = ξ̃0 =

1

ξ
(i)
2

, ξ
(i+1)
1 = σiξ̃1 =

σi

ξ
(i)
1

, ξ
(i+1)
2 =

ξ̃2

σi
=

1

σiξ
(i)
0

, (19)

where a new free parameter σi follows from Theorem 2. In the case (18)
induction shows that

ξ
(i)
0 = ξ0ξ1

i−2∏

j=1

σj , ξ
(i)
1 = σi−1, ξ

(i)
2 = ξ2

i−1∏

j=1

σ−1
j , i = 2, 3, . . . , m.

Since the lattice points on the edge between the first and the last tri-

angle must also agree, one more step gives the restriction
m−1∏

i=1

σiξ1 = 1

on the choice of parameters σi. Therefore it is clear that in this case
the lattice on the cell is determined by m + 1 free parameters. In the
second case expressions (19) imply a distinction between odd and even
m. For even numbered triangles, i.e., i = 2k, one obtains

ξ
(2k)
0 =

1
ξ2

k−1∏

j=1

σ2j , ξ
(2k)
1 =

1
ξ1

k−1∏

j=1

σ−1
2j

k∏

j=1

σ2j−1, ξ
(2k)
2 =

1
ξ0

k∏

j=1

σ−1
2j−1,

and for odd numbered triangles, i = 2k + 1,

ξ
(2k+1)
0 = ξ0

k∏

j=1

σ2j−1, ξ
(2k+1)
1 = ξ1

k∏

j=1

σ2j σ−1
2j−1, ξ

(2k+1)
2 = ξ2

k∏

j=1

σ−1
2j ,
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12 G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, E. Žagar

for i = 1, 2, . . . , m. Now, in the case when a degree of the cell is even,
m = 2k, the lattice points on the common edge between the first and

the last triangle agree if
k∏

i=1

σ2i−1 = 1, which gives m + 1 degrees of

freedom. For odd degrees, m = 2k − 1, this is true if

k−1∏

i=1

σ2i = ξ0ξ2 and ξ0ξ1ξ2 = 1,

therefore the lattice is determined by one less degree of freedom, be-
cause the equation α = 1 must be fulfilled.

Since methods α → α and α → 1
α can also be combined, the con-

clusions obtained above yield the only restriction: the method α → α
in Theorem 2 must be used even number of times for this particu-
lar labeling of triangle vertices. But triangle vertices can be labeled
arbitrarily. Each particular labeling determines the number of group
transformations that give α → 1

α so that Theorem 2 can be used as
explained before. If this number is odd (even), the method α → 1

α in
Theorem 2 must be used odd (even) number of times. That assures
that the number of degrees of freedom is m + 1.

Suppose now that the lattice has already been constructed on a
simply connected subtriangulation T ′ of the triangulation T . In the
next step of the algorithm pick a vertex P at the boundary of T ′ and
continue with the construction of the lattice on the cell C around P
in the positive direction. The lattice on a subtriangulation C ′ of C has
already been computed. Let the triangle in C ′ that is adjacent to the
starting triangle in C \ C ′ be denoted by 4F , and the triangle in C ′
adjacent to the last triangle in C \C ′ by 4L. Let each triangle in C \C ′
be oriented in the positive direction with the point P corresponding to
TTTTTTTTTn,0,0. The same must be done for triangles4F and4L by using trans-
formations from S3. The problem of determining the lattice parameters
for triangles in C \C ′ is now the same as for the cell. As shown before,
each new triangle brings an additional degree of freedom, and the last
triangle reduces the degree by one. Therefore the number of degrees of
freedom increases by the number of points added to a triangulation.
This concludes the proof of the theorem. 2

Note that the results of Theorem 3 can be easily extended to s-
connected triangulated polygonal domains. One simply applies gener-
alized Euler’s formula and the same construction, given in the proof of
Theorem 3. The number of free parameters is V + s− 1.

Since the case n = 2 is exceptional in Theorem 2, the number
of degrees of freedom in this case can be larger than the number of
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vertices of the triangulation. More precisely, the first chosen triangle
brings 3 degrees of freedom, every other triangle adds two, and every
cell diminishes the degree by one. Therefore, for a regular s-connected
triangulation with E edges there are E degrees of freedom.

Figure 6. Lattice on a regular triangulation.
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