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Abstract

We prove there is no rational rotation-minimizing frame (RMF) along any non-planar regular cubic polynomial curve. Al-
though several schemes have been proposed to generate rational frames that approximate RMF’s, exact rational RMF’s have been
only observed on certain Pythagorean-hodograph curves of degree seven. Using the Euler–Rodrigues frames naturally defined on
Pythagorean-hodograph curves, we characterize the condition for the given curve to allow a rational RMF and rigorously prove its
nonexistence in the case of cubic curves.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The rotation-minimizing frame (RMF), which executes the least possible rotation among all frames attached to a
given curve in R

3, finds important applications such as animation, swept surface constructions, and motion control.
Classically, a pair of parameterized curves are said to be parallel if their corresponding tangent vectors are always
parallel to each other. Together with the unit tangent vector, the normalized displacement vector connecting the corre-
sponding points on the parallel curves constitutes the RMF of both the curves (Bishop, 1975). Explicitly speaking, if
we denote the space curve by r(t), this normalized vector field is a solution to the differential equation (Klok, 1986)

f ′(t) = − f(t) · r′′(t)
‖r′(t)‖2

r′(t).

Then, the triad of orthonormal vectors {u, f,u × f}, where u(t) is the unit tangent of the curve r(t), forms an RMF of
r(t).

The problem is that the above differential equation, which is in fact a system of linear differential equations, is quite
difficult to solve exactly, and thus one usually resorts to approximate numerical methods (Jüttler and Wagner, 1999;
Klok, 1986).
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One of the schemes proposed to approximate the RMF of a given curve is to approximate the curve itself by a
series of planar segments that have naturally defined RMF’s and then weave them into a continuous frame of the
entire approximate curve (Wang and Joe, 1997).

Due to the preference of rational forms in computer graphics and computer-aided design applications, there have
been several rational approximation schemes for RMF’s (Farouki and Han, 2003; Jüttler and Mäurer, 1999; Mäurer
and Jüttler, 1999). Since Pythagorean-hodograph (PH) curves—polynomial curves with polynomial speed (Farouki
and Sakkalis, 1990)—are the only polynomial curves that allow rational frames, PH curves have been the principal
platform for the rational approximation of the RMF.

The motion of the Frenet frame relative to an RMF is the rotation about the tangent vector with an angular velocity
(when the curve is parameterized by arc length) equal to the torsion of the curve (Bishop, 1975). For PH curves, this
angular deviation—the integral of the torsion—involves the integration of rational functions and thus generates not
only rational terms but also transcendental terms (Farouki, 2003). Rational approximations to these transcendental
terms offer an approach to the rational approximation of the RMF.

We can use other reference frames than the Frenet frame to construct the rational approximation of the
RMF (Farouki and Han, 2003). The Euler–Rodrigues frame (ERF) arises from the quaternion representation of PH
curves (Choi and Han, 2002), and one of its advantages over the Frenet frame is that it is a rational frame already.
Furthermore, there exist PH curves of degree seven whose ERF is also an RMF. In fact the ERF on these PH curves
is the only nontrivial (i.e., non-planar) example of rational RMF’s ever reported. All previously mentioned schemes
generate either a series of planar curves, an exact RMF which is not rational, or a rational frame which is not exactly
rotation minimizing.

We will prove that the above options are the best that can be done for regular cubic polynomial curves. That is, we
will show that there exists no rational rotation-minimizing frame on any regular cubic polynomial curve, unless the
curve degenerates into a planar curve. Note that it was proved that no ERF, a special class of rational frames, on cubic
PH curves can be rotation minimizing unless the curves are planar (Choi and Han, 2002). In this paper we will show
that no rational frame at all can be rotation minimizing along any non-planar regular cubic PH curve.

We commence our discussion with a short review on quaternions using which the spatial PH curves and their ERF’s
are formulated.

2. Quaternion basics

Quaternions (Altmann, 1986) are a four-dimensional extension of complex numbers

A = a + ax i + ayj + azk,

whose multiplication is determined by the set of rules

i2 = j2 = k2 = ijk = −1.

It follows that the quaternion multiplication is noncommutative such that

ij = −ji = k, jk = −kj = i, ki = −ik = j.

The product of A with its conjugate A∗ = a − ax i − ayj − azk always results in a nonnegative real number

AA∗ = A∗A = a2 + a2
x + a2

y + a2
z .

Hence, every nonzero quaternion A has a multiplicative inverse A−1 = A∗/(AA∗).
The three-dimensional space R

3 is naturally embedded in quaternions by identifying each vector (ax, ay, az) as the
(pure) quaternion ax i + ayj + azk. This identification proves to be quite useful when we consider rotations in R

3. Any
unit quaternion U (i.e., UU∗ = 1) can be written in the form

U = cos
θ

2
+ sin

θ

2
n,

for some real θ and unit vector n (identified as a quaternion). Then, the mapping in R
3 defined by v �→ UvU∗ is

the rotation of v about the vector n by the angle θ . It follows that for a generic nonzero quaternion A, the mapping
v �→ AvA∗ is a scaled rotation in R

3; a vector v is rotated by the unit quaternion U = A/
√
AA∗ and then multiplied

by the scalar AA∗.
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3. Rational frames on polynomial curves

Given a curve r(t) in R
3, a frame on r(t) is a correspondence that assigns to each t an ordered ternary of ortho-

normal vectors {f1(t), f2(t), f3(t)}. We call a frame adapted if one of the vectors (usually designated to f1) is the unit
tangent vector r′(t)/‖r′(t)‖. In this paper we only consider adapted frames and simply call them frames.

For a polynomial curve r(t) = x(t)i + y(t)j + z(t)k, the unit tangent vector is rational if and only if ‖r′(t)‖ =√
x′(t)2 + y′(t)2 + z′(t)2 is a polynomial. It follows that the Pythagorean-hodograph (PH) condition (Farouki et al.,

2002)

x′(t)2 + y′(t)2 + z′(t)2 = σ(t)2

for some polynomial σ(t) is a necessary condition for the existence of rational frames on r(t).
For a curve r(t) to have a frame defined everywhere, the curve should be regular, i.e., r′(t) �= 0 at every t . A polyno-

mial curve r(t) is regular if and only if x′(t), y′(t), z′(t) do not share a common linear factor. The following theorem
is a slight refinement of the previous characterization (Choi et al., 2002) of regular PH curves in terms of quaternion
polynomials.

Theorem 1. A polynomial curve r(t) is a regular PH curve if and only if

r′(t) = A(t)iA(t)∗ (1)

for some quaternion polynomial A(t) = u(t) + v(t)i + p(t)j + q(t)k, where u(t), v(t), p(t), q(t) do not share a
common linear factor.

Remark 2. The linear common factor condition is essential here. In general, gcd(u, v,p, q) = constant does not
guarantee gcd(x′, y′, z′) = constant (Farouki et al., 2004).

If A(t) is a degree-n quaternion polynomial, the PH curve defined by (1) is a degree-(2n + 1) polynomial. Hence,
if there exists a polynomial curve that allows a rational frame to be defined everywhere on it, the curve should be a
regular PH curve of odd degree satisfying the condition of Theorem 1. In the subsequent discussion of rational frames,
therefore, we only need to consider regular PH curves of odd degree.

Since the mapping v �→A(t)vA(t)∗ is a scaled rotation in R
3 for each t , the following vectors

g1(t) = A(t)iA(t)∗

A(t)A(t)∗
, g2(t) = A(t)jA(t)∗

A(t)A(t)∗
, g3(t) = A(t)kA(t)∗

A(t)A(t)∗

form a right-handed rational frame along the PH curve r(t) defined by (1). This is the so-called Euler–Rodrigues
frame (ERF) (Choi and Han, 2002) of r(t), and g1, g2, g3 are the column vectors of the following matrix

1

u2 + v2 + p2 + q2

⎡
⎣u2 + v2 − p2 − q2 2(vp − uq) 2(up + vq)

2(uq + vp) u2 − v2 + p2 − q2 2(pq − uv)

2(vq − up) 2(uv + pq) u2 − v2 − p2 + q2

⎤
⎦ .

Given a PH curve r(t) its quaternion polynomial A(t) satisfying (1) is not unique (Farouki et al., 2002). If B(t) is
another quaternion polynomial such that

B(t)iB(t)∗ = A(t)iA(t)∗,

we have

A−1BiB∗(A−1)∗ = i. (2)

If we denote Q= A−1B, Eq. (2) can be written in the form

QiQ∗ = i,

whose general solution is

Q(θ) = cos
θ + sin

θ
i

2 2
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for any real θ . It follows that for each regular PH curve r(t), we have a one-parameter family of quaternion polyno-
mials Aθ (t) := A(t)Q(θ) generating the same r(t) by the formula r′(t) = Aθ (t)iAθ (t)

∗. This is an adaptation of the
Hopf fibration (Lyons, 2003) to the PH curve formulation (Choi et al., 2002). Since the quaternion Q(θ) rotates the
vectors j and k by θ about the i-axis, any pair of the ERF’s, corresponding to Aθ1 and Aθ2 , maintain a fixed angle
|θ1 − θ2| along the entire curve r(t).

Suppose there exists another right-handed rational frame {f1(t), f2(t), f3(t)} on r(t) with f1 being the unit tangent
of r(t). Then we have

g1(t) = f1(t),

g2(t) = f2(t) cosφ(t) + f3(t) sinφ(t),

g3(t) = f3(t) cosφ(t) − f2(t) sinφ(t)

(3)

for some φ(t). Since fi (t) and gj (t) are all rational, their coefficients cosφ(t) and sinφ(t) are also rational. Hence,
we may write

cosφ(t) = α(t)

γ (t)
, sinφ(t) = β(t)

γ (t)

for some polynomials α(t), β(t), γ (t) with gcd(α,β, γ ) = constant. Since they form a Pythagorean triple, i.e., α(t)2 +
β(t)2 = γ (t)2, we can further assume that α(t) and β(t) are relatively prime. Then, there exist relatively prime
polynomials a(t) and b(t) satisfying (Farouki and Sakkalis, 1990)

α(t) = a(t)2 − b(t)2, β(t) = 2a(t)b(t), γ (t) = a(t)2 + b(t)2.

We may conclude as follows.

Theorem 3. Any rational frame {f1, f2, f3} on a regular PH curve r(t) is of the form

f1 = g1,

f2 = a2 − b2

a2 + b2
g2 − 2ab

a2 + b2
g3,

f3 = a2 − b2

a2 + b2
g3 + 2ab

a2 + b2
g2

(4)

for some relatively prime polynomials a(t) and b(t), where {g1,g2,g3} is the ERF of r(t).

Remark 4. If we define Q(t) = a(t) − b(t)i, the frame {f1, f2, f3} on r(t) is the ERF of the curve r̃(t) defined by
r̃′(t) = [A(t)Q(t)]i[A(t)Q(t)]∗. Since r̃′(t) = [a(t)2 + b(t)2]r′(t), the curve r̃(t) is a regular PH curve of degree-
[2(m + n) + 1], where m is the degree of Q(t). The curves r(t) and r̃(t) have the same unit tangent vector, or the
tangent indicatrix.

4. Rotation-minimizing frames

While the vectors f2(t) and f3(t) of the frame are required to stay on the plane perpendicular to r′(t), they are free
to rotate on that plane. Among all possible frames on r(t), there exists a frame whose f2 and f3 experience the least
possible rotation. Such a frame is called the rotation-minimizing frame (RMF) and its f2 and f3 are the solutions of
the linear differential equation (Klok, 1986)

f ′(t) = − f(t) · r′′(t)
‖r ′(t)‖2

r′(t).

Note that such a pair f2 and f3 is not unique; there exist a one-parameter family of RMF’s corresponding to different
sets of initial position of f2 and f3.

On the other hand, it is easier to verify whether a given frame is an RMF. A frame {f1, f2, f3} is an RMF if and only
if either of (and thus each of) f ′

2(t) and f ′
3(t) is parallel to f1(t), the unit tangent vector (Bishop, 1975). Equivalently,

f ′
2(t) · f3(t) ≡ 0 (5)
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is the necessary-and-sufficient condition for the frame to be rotation minimizing.
Suppose the rational frame (4) is an RMF. By differentiating (4) and invoking the fact (Choi and Han, 2002)

g′
2 · g3 = 2

uv′ − u′v − pq ′ + p′q
u2 + v2 + p2 + q2

,

it can be verified immediately that condition (5) is equivalent to

ab′ − a′b
a2 + b2

= uv′ − u′v − pq ′ + p′q
u2 + v2 + p2 + q2

. (6)

Theorem 5. The regular PH curve r(t) defined by a quaternion polynomial A(t) = u(t) + v(t)i + p(t)j + q(t)k has
a rational RMF if and only if there exist relatively prime polynomials a(t) and b(t) satisfying (6).

5. Cubic PH curves

We write the linear quaternion polynomial A(t) for a cubic PH curve r(t) as follows:

u(t) = u0 + u1t, v(t) = v0 + v1t, p(t) = p0 + p1t, q(t) = q0 + q1t,

or

A(t) = A0 +A1t, Ai = ui + vi i + pij + qik, i = 0,1.

Then, we have

uv′ − u′v − pq ′ + p′q = u0v1 − u1v0 − p0q1 + p1q0

and

u2 + v2 + p2 + q2 = 〈A,A〉 = ‖A0‖2 + 2t〈A0,A1〉 + t2‖A1‖2, (7)

where we identified quaternions as four-dimensional vectors and defined their inner product by 〈A,B〉 = ab +axbx +
ayby + azbz. (Note also that ‖A‖2 = AA∗ = 〈A,A〉.) The discriminant of the above quadratic polynomial is

Δ =
√

‖A0‖2‖A1‖2 − 〈A0,A1〉2 =
√

A2 + B2 + C2 + D2 + E2 + F 2, (8)

where

A = u0v1 − u1v0, C = u0p1 − u1p0, E = u0q1 − u1q0,

B = p0q1 − p1q0, D = v0q1 − v1q0, F = v0p1 − v1p0.
(9)

Note that Δ > 0 since r(t) is regular. Then Eq. (7) can be written as

u2 + v2 + p2 + q2 = ‖A1‖2
[
t + 〈A0,A1〉 + iΔ

‖A1‖2

][
t + 〈A0,A1〉 − iΔ

‖A1‖2

]
,

and we have

uv′ − u′v − pq ′ + p′q
u2 + v2 + p2 + q2

= u0v1 − u1v0 − p0q1 + p1q0

‖A1‖2
[
t + 〈A0,A1〉+iΔ

‖A1‖2

][
t + 〈A0,A1〉−iΔ

‖A1‖2

] . (10)

Now consider the prime factor decomposition of the complex polynomial

a(t) + ib(t) = λ(t − μ1) . . . (t − μm).

Since a(t) and b(t) are relatively prime real polynomials, we have μj �= μk for any 1 � j, k � m (including the case
j = k). Then

a′(t) − ib′(t) = λ

m∑
j=1

[
m∏

k=1

(t − μk)

]
.

k �=j
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It follows that

aa′ + bb′ − i(ab′ − a′b) = (a + ib)(a′ − ib′) = |λ|2
m∑

j=1

[
(t − μj )

m∏
k=1
k �=j

|t − μk|2
]
.

By taking the imaginary part, we obtain

ab′ − a′b = |λ|2
m∑

j=1

[
Im(μj )

m∏
k=1
k �=j

|t − μk|2
]
.

If we divide both sides by a(t)2 + b(t)2 = |λ|2|t − μ1|2 . . . |t − μm|2, we finally have

ab′ − a′b
a2 + b2

= Im(μ1)

|t − μ1|2 + · · · + Im(μm)

|t − μm|2 . (11)

Now, if we compare the rational functions of Eqs. (10) and (11), they can be the same expressions only if they have
the same poles, where the rational functions diverge. Thus, we can readily see that

μj = −〈A0,A1〉 + iΔ

‖A1‖2
or − 〈A0,A1〉 − iΔ

‖A1‖2
, j = 1, . . . ,m (12)

is the necessary condition for Eq. (6) to hold. Since no pair of μj ’s can be conjugate to each other, the choices in
(12) should be uniform throughout all j = 1, . . . ,m. Then, after the common factors are canceled out, condition (6) is
reduced to

±mΔ = u0v1 − u1v0 − p0q1 + p1q0. (13)

We found an inequality related to (13).

Lemma 6. With Δ defined by (8), we have

Δ � |u0v1 − u1v0| + |p0q1 − p1q0|.

Proof. We have

Δ2 − (|u0v1 − u1v0| + |p0q1 − p1q0|
)2 = C2 + D2 + E2 + F 2 − 2|AB|, (14)

where A, B , C, D, E, F are as defined in (9). It is easy to verify that AB = CD − EF . Then

C2 + D2 + E2 + F 2 − 2|AB| � 2
(|CD| + |EF | − |CD − EF |) � 0. �

If we combine Lemma 6 and Eq. (13), we obtain

Δ � |u0v1 − u1v0| + |p0q1 − p1q0| � |(u0v1 − u1v0) − (p0q1 − p1q0)| = mΔ. (15)

Condition (15) cannot be satisfied unless m = 0 or 1. If m = 0, the last equality in (15) requires

u0v1 − u1v0 − p0q1 + p1q0 = 0,

the condition that forces the cubic PH curve to be planar (Choi and Han, 2002). A rational RMF can be trivially
defined on any planar PH curve.

Now if m = 1, every inequality that should be satisfied in (15) is now an equality. That is, we must have

Δ = |u0v1 − u1v0| + |p0q1 − p1q0| =
∣∣(u0v1 − u1v0) − (p0q1 − p1q0)

∣∣. (16)

From the second equality in (16) we must have

(u0v1 − u1v0)(p0q1 − p1q0) � 0.

In view of (14) the first equality in (16) can now be written as

C2 + D2 + E2 + F 2 + 2AB = 0. (17)



304 C.Y. Han / Computer Aided Geometric Design 25 (2008) 298–304
On the other hand, the curvature of a generic PH curve can be simplified to produce (Farouki, 2003)

κ = ‖r′ × r′′‖
‖r′‖3

= 2
√

ρ

‖r′‖2
,

where

ρ = (up′ − u′p)2 + (vq ′ − v′q)2 + (uq ′ − u′q)2 + (vp′ − v′p)2 + 2(uv′ − u′v)(pq ′ − p′q).

For cubic PH curves, the above expression has the form

ρ = C2 + D2 + E2 + F 2 + 2AB.

Hence, in view of (17), when m = 1, condition (15) can be satisfied only if r(t) is a straight line. We may conclude
our discussion as follows.

Theorem 7. If a regular cubic PH curve allows a rational RMF, the curve should be planar.

Remark 8. The case m = 1 can be also explained using the previous result on ERF (Choi and Han, 2002). If there
exist a pair of linear polynomials a(t) and b(t) such that the frame {f1, f2, f3} in (4) is rotation minimizing, the ERF
of r̃(t) defined in Remark 4 is also rotation minimizing. But r̃(t) is a quintic PH curve, whose ERF can be an RMF if
and only if it is planar.

6. Concluding remarks

Regarding the construction of moving frames along space curves, the rotation-minimizing property and the rational
dependence upon the curve parameter are two of the most desirable characteristics among others. The only reported
instances satisfying both have been the Euler–Rodrigues frames on certain Pythagorean-hodograph curves of degree
seven. In this paper, a characterization of regular polynomial curves that allow rational rotation-minimizing frames
has been developed, and the case of cubic curves has been thoroughly examined resulting in the nonexistence of such
frames. This approach can be extended to polynomial curves of higher degrees to facilitate the understanding of the
existence and characterization of their rational rotation-minimizing frames.
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