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Abstract

An adapted frame(t,u,v) on a space curver(ξ) is a right-handed set of three orthonormal vectors, wh
t is the unit tangent andu, v span the curve normal plane. For such frames to have a rational depende
the curve parameter,r(ξ) must be a Pythagorean-hodograph (PH) curve, since only PH curves have ration
tangent vectors. Among all possible adapted frames, therotation-minimizing frame(RMF) is the most attractive fo
applications such as animation, swept surface constructions, and motion planning. The PH curves admit ex
descriptions, but they involve transcendental (logarithmic) functions. Since rational forms are generally pr
the problem of rational approximation of RMFs for PH curves is considered herein. This is accomplis
employing theEuler–Rodrigues frame(ERF) as a reference (the ERF is rational and, unlike the Frenet frame
not suffer indeterminacies at inflections). The function that describes the angular deviation between the R
ERF is derived in closed form, and is approximated by Padé (rational Hermite) interpolation. In typical case
interpolants furnish compact approximations of excellent accuracy, amenable to use in a variety of applica
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

An adapted frameon a regular space curver(ξ) is a right-handed orthonormal system of vector fie
t(ξ), u(ξ), v(ξ), wheret(ξ) = r′(ξ)/|r′(ξ)| is the unit tangent. There are many possible choices (Bis
1975) foru(ξ) andv(ξ), compatible with the requirement thatt(ξ) = u(ξ)× v(ξ)—they can be derived
from each other by rotations in the curve normal plane at each point.
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The cumulative arc length function along the curver(ξ) is defined by

s(ξ) =
ξ∫

0

∣∣r′(t)
∣∣dt.

Throughout this paper, primes indicate derivatives with respect to the curve parameterξ , and dots denote
derivatives with respect to the arc lengths—such derivatives are related by

d

ds
= 1

|r′(ξ)|
d

dξ
.

Now the Cartesian components of the frame vectors yield the matrix

A = [ t u v ] =
[
tx ux vx
ty uy vy
tz uz vz

]
,

and since(t,u,v) form a basis inR3, the arc-length derivative ofA must be expressible in the form

Ȧ = A C.

From the relations|t| = |u| = |v| = 1 andt · u = u · v = v · t = 0, one can easily see that theCartan
connection matrixhas the skew-symmetric form

C =
[ 0 −γ β

γ 0 −α

−β α 0

]
,

whereα = u̇ · v, β = v̇ · t, γ = ṫ · u. Equivalently, we may write

dt
ds

= ω × t,
du
ds

= ω × u,
dv
ds

= ω × v, (1)

where the angular velocity vectorω for the frame(t,u,v) is defined by

ω = αt + βu + γ v. (2)

The most familiar case of an adapted frame is theFrenet frame, for which u andv are the normaln
and binormalb, respectively, defined (Kreyszig, 1959; Struik, 1988) by

n = r′ × r′′

|r′ × r′′| × t, b = t × n. (3)

For a polynomial or rational curver(ξ), however, the frame(t,n,b) does not depend rationally1 on the
curve parameterξ . Also, n andb are undefined atinflections, wherer′′ is parallel tor′ or vanishes (in
fact, they may experience sudden reversals through such points—see Fig. 5).

For the Frenet frame, we have(α,β, γ )= (τ,0, κ) where

κ = |r′ × r′′|
|r′|3 and τ = (r′ × r′′) · r′′′

|r′ × r′′|2 (4)

1 A special class of curves that do possess rational Frenet frames is discussed in (Wagner and Ravani, 1997).
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are the curvature and torsion. Correspondingly, the angular velocity (2) for the Frenet frame beco
Darboux vector

d = κb + τ t, (5)

and|d| = √
κ2 + τ 2 is sometimes called the “total curvature” (Kreyszig, 1959; Struik, 1988).

Now for any adapted frame(t,u,v) the componentα t of the angular velocity vector (2) correspon
to an instantaneous rotation ofu andv in the normal plane of the curve. This component is not esse
to the definition of an adapted frame—in fact, it is always possible to construct an adapted fram
lacks this “unnecessary” component. Such a frame, characterized by the property thatα ≡ 0, is called a
rotation-minimizing frame(RMF). For an RMF, the angular velocity vector can be written as

ω = βu + γ v = −(ṫ · v)u + (ṫ · u)v, (6)

where we note thaṫv · t = −ṫ · v, sincev · t = 0. Now ṫ lies in the normal plane spanned byu andv (since
|t| = 1), and we can writėt = µu + νv. By substituting into (6), we find thatω = −νu + µv—i.e., for
an RMF,ω is just a rotation oḟt by 1

2π in the normal plane. For the Frenet frame, on the other hand
second basis vectorn is chosen so as to always lie in the direction ofṫ, and this choice means thatα �≡ 0.

The RMF finds important applications in animation and motion control, where the orientati
a rigid body must be specified as its center of mass executes a given spatial trajectory. Align
body’s principal axes with the RMF at each point offers a natural solution to this problem, that
the “unnecessary” normal-plane rotation and inflectional indeterminacies2 of the Frenet frame. Anothe
application is in the construction of swept surfaces (Klok, 1986), defined by the motion of a “pr
curve along a “sweep” curve: using the RMF to orient the profile curve within the normal plane a
undesired “twisting” of the swept surface. Finally, the RMF provides a solution to the problem of e
minimization for framed space curves (see Section 2 below).

Unfortunately, the polynomial and rational curves employed in computer graphics, compute
design, robotics, and similar applications do not admit simple closed-form descriptions for their
Consequently, several schemes have been proposed to approximate the rotation-minimizing fra
given curve, or to approximate a given curve by “simpler” segments (e.g., circular arcs) with k
rotation-minimizing frames (Jüttler, 1998; Jüttler and Mäurer, 1999a, 1999b; Wang and Joe, 1997

An exactderivation of the RMF is possible (Farouki, 2002) for spatialPythagorean-hodograph(PH)
curves(Farouki et al., 2002a, 2002b)—but this involves the solution of quartic equations, and t
of transcendental (logarithmic) functions. PH curves incorporate algebraic structures that offer
computational advantages. For example, only PH curves can have rational adapted frames—si
PH curves have rational unit tangent vectors. Furthermore, the arc lengths of PH curves can be c
precisely, and one can formulate real-time interpolators to drive multi-axis CNC machines along c
paths, at fixed or varying speeds, from their exact analytic descriptions (Farouki et al., 1998; Faro
Shah, 1996; Tsai et al., 2001).

Since rational forms are preferred in computer graphics and computer-aided design applicati
consider here rational approximation schemes for RMFs on spatial PH curves. We employ theEuler–
Rodrigues frameas a reference, which has distinct advantages over the Frenet frame. The ER
introduced in (Choi and Han, 2002), and arises specifically from the quaternion representation o
PH curves in a particular Cartesian coordinate system. The angular deviation of the RMF, relativ

2 See Example 5 in Section 5 below.
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ERF, is derived as a transcendental function, and Padé (rational Hermite) approximations to this
are constructed. For typical PH quintics, a rational rotation applied to the ERF offers a highly ac
approximation of the RMF.

This paper is organized as follows. In Section 2 we review the relation between RMFs and the p
of energy minimization for framed space curves. The function characterizing the angular de
between the RMF and ERF is then derived in Section 3. In Section 4 we describe a sche
the construction of Padé (i.e., rational Hermite) interpolants to this function, yielding rational
approximations. The performance of this scheme is illustrated through some computed exam
Section 5. Finally, in Section 6 we summarize our results and make some concluding remarks.

2. Deformation energy of elastic rods

In the theory of plane curves, the energy integral

E =
S∫

0

κ2 ds (7)

is used as a measure of “fairness” for a curve of total lengthS. This integral is proportional to th
strain energy stored in a thin elastic beam, bent from an initially-straight configuration into the
of the curve (Farouki, 1996). Minimization ofE subject to interpolation constraints (and possibly a
S = constant) is a basic approach to the construction of “fair” curves.

Since curvature alone does not characterize the intrinsic geometry of non-planar curves, the q
arises as to how the integral (7) can be generalized into an appropriate fairness measure for spac
The theory of elastic spatial rods is much more subtle and involved (Dill, 1992; Landau and Li
1986; Lembo, 2001; Love, 1944; Steigmann and Faulkner, 1993) than that of planar beams.
difference between the planar and spatial problems is that, for the latter, the “twist” of the elastic ro
its center line is an important contribution to the energy. This twist—which should not be confuse
(and is quite independent of) the torsion function in (4)—is specified by superposing an adapted
on the curve. Following (Landau and Lifshitz, 1986), we review below the energy integral appropr
a “framed space curve,” and highlight the significance of the RMF in this context.

Consider the deformation of a thin initially-straight elastic rod with total lengthS and circular
cross section of radiusr  S. The deformation includes both bending and twisting of the rod,
the total lengthS is unchanged. We define coordinates(ξ, ζ, η) in the deformed rod such that, in th
undeformed state, they coincide with Cartesian coordinates(x, y, z) where the rod center line lies alon
the x-axis. After deformation, the orthonormal frame(t,u,v) associated with the coordinates(ξ, ζ, η)
rotates continuously along the length of the rod:t is the tangent to the center-line, whileu andv span the
cross-sectional plane. This rotation is specified by the angular velocity vector

ω = dφ

ds
,

where dφ is the (vector) infinitesimal frame rotation associated with an arc length incremens,
through the relations (1). Now if we express the angular velocity vectorω in terms of components a
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ωξ t + ωζu + ωηv, the work done in deforming the rod from the initial straight configuration—i.e.,
elastic strain energy stored in the deformed rod—can be written (Landau and Lifshitz, 1986) as

U =
S∫

0

1
2GJω2

ξ + 1
2EI

(
ω2

ζ + ω2
η

)
ds.

E andG are the Young’s modulus and shear modulus (modulus of rigidity) of the material and,
circular cross section of radiusr , the quantities

I = πr4

4
and J = πr4

2
are the second moment of area about a diameter, and second polar moment of area about the c
term 1

2EI (ω2
ζ + ω2

η) in the integrand represents the bending energy per unit length, while1
2GJω2

ξ is the
twisting energy per unit length. Introducing the material constitutive relation

G = E

2(1+ ν)
,

whereν is Poisson’s ratio, the energy integral may be expressed as

U = πr4E

8

S∫
0

kω2
ξ +ω2

ζ + ω2
η ds, (8)

wherek = 1/(1 + ν). For most metalsν ≈ 0.3, and hencek ≈ 0.75 can be used as a “canonical” val
for this weighting factor.

It is evident that we cannot speak of the energy of a space curve without also specifying an a
frame along the curve: the adapted frame serves to fix the amount of “twisting” of the elastic rod a
center-line axis,3 which is an additional source of strain energy. Comparing with (2), we see thatα = ωξ ,
β = ωζ , γ = ωη. Thus, if the twist of the elastic rod is defined by the Frenet frame, the integrand
becomeskτ 2 + κ2, and the twist of the rod evidently makes a non-zero contribution in this case.

Now taking cross products of the first equation in (1) witht gives

ω = (t · ω)t + t × dt
ds

,

and sincet · ω = ωξ and dt/ds = κn, whereκ is the curvature andn is the normal vector, we obtain

ω = ωξ t + κb,

whereb = t×n is the binormal vector. Thus, foranychoice ofu andv we always haveωζu +ωηv = κb,
and hence

ω2
ζ + ω2

η = κ2 =
∣∣∣∣ dt
ds

∣∣∣∣2.
Hence, the integrand in (8) always has the formkω2

ξ + κ2, and for a given curve its smallest value at ea
point is realized whenωξ ≡ 0—i.e., the adapted frame chosen to specify the “twist” is an RMF.

3 This twisting is independent (Love, 1944) of the torsionτ in (4). Whereas the latter is fixed by the intrinsic geometry,
twist ωξ can be arbitrarily imposed on a given space curve.
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Since choosing an RMF gives the least possible value for the integral (8), among all possible a
frames, it is natural to use this choice in defining an “intrinsic” energy for space curves—that de
only on their shapes, and is independent of the manner in which they are framed. Sinceωξ ≡ 0 for an
RMF, andω2

ζ + ω2
η = κ2 for any adapted frame, with this choice the energy integral (8) for space c

clearly coincides—up to a multiplicative constant—with the energy integral (7) for planar curves.

3. RMF and ERF on PH curves

Since polynomial and rational curves do not, in general, admit rational RMF representa
approximations are necessary to conform to the prevailing representation schemes in comput
geometric design. For any adapted frame, exactitude of the curve tangent fieldt(ξ) is one attribute tha
should not be compromised by the approximation scheme. Since only the PH curves admit ratio
tangents, our focus henceforth will be on rational RMF approximations for spatial PH curves us
quaternion representation (Choi et al., 2002).

Given a quaternion polynomial

A(ξ)= u(ξ)+ v(ξ)i + p(ξ)j + q(ξ)k (9)

of degreed, integration of the hodograph

r′(ξ) = A(ξ)iA∗(ξ), (10)

whereA∗(ξ) = u(ξ)− v(ξ)i −p(ξ)j − q(ξ)k, defines a PH curver(ξ) of degree 2d + 1. The hodograph
components satisfy the Pythagorean condition

x′2(ξ)+ y′2(ξ)+ z′2(ξ)≡ σ 2(ξ), (11)

where

x′(ξ)= u2(ξ)+ v2(ξ)− p2(ξ)− q2(ξ),

y′(ξ)= 2
[
u(ξ)q(ξ)+ v(ξ)p(ξ)

]
,

z′(ξ) = 2
[
v(ξ)q(ξ)− u(ξ)p(ξ)

]
,

σ (ξ)= u2(ξ)+ v2(ξ)+ p2(ξ)+ q2(ξ). (12)

The above form is sufficient and necessary (Dietz et al., 1993) to satisfy (11), and is invariant (F
et al., 2002a) under general spatial rotations. The quaternion representation (10) for the form (1
its resulting rotation invariance, have also been noted by Wallner and Pottmann (1997), in the
of blending surface constructions for quadrics. Additional details on the construction and prope
spatial PH curves in the quaternion representation may be found in (Farouki et al., 2002a, 2002b

Corresponding to the hodograph (10), an adapted rational frame onr(ξ)—the so-called Euler–
Rodrigues frame (ERF)—is defined (Choi and Han, 2002) by

t(ξ)= A(ξ)iA∗(ξ)
A(ξ)A∗(ξ)

, u(ξ)= A(ξ)jA∗(ξ)
A(ξ)A∗(ξ)

, v(ξ) = A(ξ)kA∗(ξ)
A(ξ)A∗(ξ)

. (13)

Unlike the Frenet frame, the ERF is defined at every point of a PH curve. Moreover, ifr(ξ) is of
degree 2d + 1, the ERF has a rational dependence of degree 2d on the curve parameter. For a giv
a PH curve, the ERF is not uniquely defined, since the quaternion representation of the PH curv
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unique (Farouki et al., 2002a). However, this ambiguity is not essential, since each pair of ERFs m
a constant angular difference along the curve.

Now the quantities(α,β, γ ) = (ωξ ,ωζ ,ωη) introduced in Sections 1 and 2 were defined in term
arc-length derivatives. It is more convenient, henceforth, to define them in terms of parametric deri
For a PH curve, the two definitions differ only by a factor ofσ , theparametric speedof the curve. For
the PH curve specified by (10), we then have (Choi and Han, 2002):

α = u′ · v = 2
uv′ − u′v − pq ′ + p′q
u2 + v2 + p2 + q2

.

A non-trivial PH curve havingα ≡ 0 (i.e., the ERF and RMF are coincident) must be (Choi and H
2002) of degree� 7. Since no algorithms are currently available that allow this class of curves
used in practical design problems, we focus on the PH quintics—for which such algorithms are
(Farouki et al., 2002b, 2003)—and seek rational rotations of the ERF aboutt that closely approximate a
RMF.

Let (t̃, ũ, ṽ) be a rotation of the ERF about the tangent, such that

t̃(ξ)= t(ξ),
[

ũ(ξ)
ṽ(ξ)

]
=

[
cosθ(ξ) sinθ(ξ)

−sinθ(ξ) cosθ(ξ)

][
u(ξ)
v(ξ)

]
.

Then, as expected, we have

α̃ = ũ′ · ṽ = θ ′ + α,

i.e., the angular speed (aboutt) of the rotated frame is its angular speed with respect to the refer
frame, plus the angular speed of the reference frame itself. Hence, the rotated frame coincides
RMF if and only if θ(ξ) satisfies4

θ ′ = −α = 2
u′v − uv′ − p′q + pq ′

u2 + v2 + p2 + q2
. (14)

An exact computation ofθ(ξ) requires the integration of a rational function of degree 2d. In general,
this integration incurs transcendental (logarithmic) functions inθ(ξ), so we cannot expect cosθ(ξ) and
sinθ(ξ), and the RMF, to be rational. For details of this exact integration—using the Frenet frame,
than the ERF, as a reference5—see (Farouki, 2002).

Instead of exact integration, we employ rational approximation. Letφ(ξ) be an approximation ofθ(ξ),
such that

sinφ(ξ) = a2(ξ)− b2(ξ)

a2(ξ)+ b2(ξ)
, cosφ(ξ) = 2a(ξ)b(ξ)

a2(ξ)+ b2(ξ)

4 Since the RMF is characterized by a differential constraint, there is a one-parameter family of RMFs, correspondi
choice of an initial orientation on integrating (14).

5 The angular difference between the RMF and the Frenet frame is simply the integral of the torsion with respect to a
(Farouki, 2002; Guggenheimer, 1989).
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for some polynomialsa(ξ) andb(ξ). In other words, we are trying to construct a rational parameteriza
of the circle,6 such that the corresponding angular variationφ(ξ) closely approximates the know
(transcendental) functionθ(ξ). One can easily verify that

1
2φ

′ = a′b − ab′

a2 + b2
= d

dξ
arctan

a

b
,

and henceφ is a good approximation ofθ if and only if a/b is a good rational approximation of th
function

f (ξ)= tan1
2θ(ξ) = tan

∫
g(ξ)

h(ξ)
dξ, (15)

where

g(ξ)= u′(ξ)v(ξ)− u(ξ)v′(ξ)− p′(ξ)q(ξ)+ p(ξ)q ′(ξ), (16)

and

h(ξ)= u2(ξ)+ v2(ξ)+ p2(ξ)+ q2(ξ). (17)

As a measure of the quality of approximation, we compare the exact functionθ(ξ) = 2
∫
g(ξ)/h(ξ)dξ

with the approximationφ(ξ) = 2arctana(ξ)/b(ξ).

4. Rational Hermite interpolation scheme

The possibility of rational adapted frames on space curves was first observed in the earl
(Farouki and Sakkalis, 1994) of spatial PH curves, which employed a representation that is su
(but not necessary) for a Pythagorean hodograph. Jüttler and Mäurer (1999b) subsequently d
RMF approximations for PH cubics. Since PH cubics have rather limited shape flexibility, we focu
on general rational RMF approximations for quintic or higher-order PH curves.

To approximate (15) by a rational functiona(ξ)/b(ξ), we use multi-point Padé approximation, whi
is equivalent to rational Hermite interpolation. For background on this topic, the reader may c
(Baker and Graves-Morris, 1996; Brezinski and Van Iseghem, 1994; Cuyt, 1992).

Consider a functionf (ξ) and a set of distinct pointsξ0, . . . , ξr ∈ [0,1] where, at each pointξi , the
function value and derivativesf (k)(ξi) are given fork = 0, . . . , si − 1 (si > 0). The rational Hermite
interpolation problem of order(m,n) for f (ξ) amounts to the construction of polynomials

a(ξ) =
m∑
i=0

aiξ
i and b(ξ) =

n∑
i=0

biξ
i,

such that
r∑

i=0

si =m+ n+ 1 (18)

6 Rational parameterizations of circles are discussed extensively in the literature (Bangert and Prautzsch, 1997; Ch
Fiorot et al., 1997; Piegl and Tiller, 1989). The goal in these studies is typically to achieve nearly-uniform parameter
while our present goal is to obtain rational approximations of aspecificparameterization.
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f (k)(ξi) =
(
a

b

)(k)

(ξi) for k = 0, . . . , si − 1; i = 0, . . . , r. (19)

Note that the sum of degrees ofa andb is minimal to satisfy the interpolation conditions. Instead
directly using (19), we consider the conditions

(f b − a)(k)(ξi) = 0 for k = 0, . . . , si − 1; i = 0, . . . , r. (20)

These conditions define a homogeneous system ofm+ n+ 1 linear equations in them+ n+ 2 unknown
coefficientsai andbi of a(ξ) andb(ξ), and hence they always admit at least one non-trivial solution
fact, if a1(ξ), b1(ξ) anda2(ξ), b2(ξ) both satisfy (20), thena1(ξ)b2(ξ) ≡ a2(ξ)b1(ξ)—i.e., all rational
solutions of (20) have the same irreducible form.

Having computed a rational interpolanta/b from the linear interpolation conditions (i.e., th
conditions expressed in terms off b − a instead off − a/b), it may happen in certain exception
cases that an interpolation point is also a common zero ofa andb. At such points, the irreducible form o
a/b may not interpolate the correct value. This problem may be remedied by checking for coinc
of the roots of gcd(a, b) with any of the nodesξ0, . . . , ξr . When such coincidences occur, a higher or
(m,n) for the rational interpolant is needed to achieve the prescribed interpolation conditions.

Now let x0, . . . , xm+n be a list of the distinct interpolation nodesξ0, . . . , ξr with each node repeate
according to its multiplicity, i.e.,

x0, . . . , xs0−1︸ ︷︷ ︸
= ξ0

, xs0, . . . , xs0+s1−1︸ ︷︷ ︸
= ξ1

, . . . , xs0+···+sr−1, . . . , xs0+···+sr−1+sr−1︸ ︷︷ ︸
= ξr

.

Then, for the given set of nodes and multiplicities, the divided differences off (ξ) are defined (Stoer an
Bulirsch, 1992) recursively by

f [xi] = f (xi),

and

f [xi, . . . , xi+k] =




f (k)(xi)

k! if xi = · · · = xi+k,

f [xi+1, . . . , xi+k] − f [xi, . . . , xi+k−1]
xi+k − xi

otherwise.

It is convenient to introduce the more compact notation

ci,j =
{

0 i > j,

f [xi, . . . , xj ] i � j.

If we then set

Bj(ξ)=




1 j = 0,
j∏

k=1

(ξ − xk−1) otherwise,
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Fi,j (ξ)=




0 i > j,

j∑
k=i

ci,kBk(ξ) i � j,

the numerator and denominator of the rational interpolanta(ξ)/b(ξ) can be formulated (Cuyt, 1992) a
the determinants

a(ξ) =

∣∣∣∣∣∣∣∣∣∣∣

F0,m(ξ) F1,m(ξ) · · · Fn,m(ξ)

c0,m+1 c1,m+1 · · · cn,m+1

c0,m+2 c1,m+2 · · · cn,m+2

· · · · · · · · · · · ·
c0,m+n c1,m+n · · · cn,m+n

∣∣∣∣∣∣∣∣∣∣∣
,

and

b(ξ)=

∣∣∣∣∣∣∣∣∣∣∣

B0(ξ) B1(ξ) · · · Bn(ξ)

c0,m+1 c1,m+1 · · · cn,m+1

c0,m+2 c1,m+2 · · · cn,m+2

· · · · · · · · · · · ·
c0,m+n c1,m+n · · · cn,m+n

∣∣∣∣∣∣∣∣∣∣∣
.

An explicit expansion of the determinants is not necessarily a good approach to computinga(ξ) andb(ξ),
especially for largem andn. However, we are primarily interested in the low-degree casem = n = 2, for
which we obtain the simple closed-form expressions

a(ξ) = c0,0[c1,4c2,3 − c1,3c2,4]
+ [c0,1c1,4c2,3 + c0,3c1,1c2,4 − c0,4c1,1c2,3 − c0,1c1,3c2,4](ξ − x0)

+ [c0,2c1,4c2,3 + c0,3c1,2c2,4 + c0,4c1,3c2,2

− c0,3c1,4c2,2 − c0,4c1,2c2,3 − c0,2c1,3c2,4](ξ − x0)(ξ − x1) (21)

and

b(ξ)= c1,4c2,3 − c1,3c2,4 + [c0,3c2,4 − c0,4c2,3](ξ − x0)

+ [c0,4c1,3 − c0,3c1,4](ξ − x0)(ξ − x1). (22)

To compute interpolant values and derivatives for the function (15) that we wish to approxima
begin by noting that since the denominator of the integrand in (15) is quartic, it can be factorized b
Ferrari’s method (Uspensky, 1948) to compute its rootsz1, z2, z3, z4. In general, these roots are distin
and we can use a partial fraction expansion to write the integrand as

g(ξ)

h(ξ)
=

4∑
k=1

ck

ξ − zk
,
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the coefficients (residues)ck being found by clearing the denominators, and settingξ equal to each roo
in succession, to obtain

ck = g(zk)∏
j �=k

(zk − zj )
, k = 1, . . . ,4.

Integration then gives∫
g(ξ)

h(ξ)
dξ = θ0 +

4∑
k=1

ck ln(ξ − zk),

whereθ0 is an integration constant. Assuming that gcd(u, v,p, q) = constant, the roots ofh must occur
as complex conjugate pairs, and the corresponding residues are also complex conjugates. Log
terms that correspond to such pairs can be combined to give explicitly real expressions—for exa
z, z̄ andc, c̄ are conjugate roots and residues, we have

c ln(ξ − z)+ c̄ ln(ξ − z̄) = 2
[
Re(c) ln |ξ − z| − Im(c)arg(ξ − z)

]
.

Denoting the other pair of roots and corresponding residues byw, w̄ andd, d̄ so that

g(ξ)

h(ξ)
= c

ξ − z
+ c̄

ξ − z̄
+ d

ξ −w
+ d̄

ξ − w̄
, (23)

we have∫
g(ξ)

h(ξ)
dξ = 2

[
Re(c) ln |ξ − z| + Re(d) ln |ξ −w|

− Im(c)arg(ξ − z)− Im(d)arg(ξ −w)
] + θ0. (24)

Since this integral is subject to evaluation by the tangent function, one must be careful to cho
integration constantθ0 such that the integral does not cross(n+ 1

2)π in the intervalξ ∈ [0,1] of interest.
This can be done by evaluating the extrema of the integral, which are located at the real roots ofg(ξ) on
ξ ∈ (0,1) or at the interval endpointsξ = 0 andξ = 1. In case the range of values of the integral is
contained within an interval of the form(n − 1

2)π < ξ < (n + 1
2)π , a further subdivision ofξ ∈ [0,1] is

necessary.

Example 1. Consider the general PH quintic defined by

u(ξ)= 4.86877+ 4.78126ξ + 3.32330ξ2,

v(ξ)= −6.43321+ 5.52435ξ + 2.85747ξ2,

p(ξ)= 2.83170− 9.98047ξ − 7.28976ξ2,

q(ξ) = −1.53492− 2.73598ξ + 9.65593ξ2.

Forming the polynomials (16) and (17), we have

z, z̄ = −0.830350± 0.828652i and c, c̄ = 0.0125113± 0.219377i,

w, w̄ = 0.359226± 0.449591i and d, d̄ = −0.0125113± 0.312214i
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in the partial fraction decomposition (23). The numeratorg(ξ) does not have real roots, and the righ
hand side of (24) has the values 0.561425π + θ0 atξ = 0 and 0.188488π + θ0 atξ = 1. Hence, by setting
θ0 = −0.374956π , the integral remains in the range±0.186469π .

As evident from the above example, further structure can be discerned in the partial fr
decomposition (23) for general PH quintics.

Lemma 1. For general PH quintics, the residuesc andd in expression(24) satisfyRe(c)+ Re(d) = 0.

Proof. For general PH quintics, we have deg(g)= 2 and deg(h)= 4. Settingh(ξ)= k(ξ −z)(ξ − z̄)(ξ −
w)(ξ − w̄) and clearing denominators in (23) gives

g(ξ)= k(c + c̄ + d + d̄)ξ3 + lower order terms.

Since g(ξ) is just quadratic, we must havec + c̄ + d + d̄ = 2Re(c + d) = 0, and hence Re(c) +
Re(d) = 0. ✷

Hence, expression (24) can be simplified somewhat to yield∫
g(ξ)

h(ξ)
dξ = 2

[
Re(c) ln

∣∣∣∣ ξ − z

ξ −w

∣∣∣∣ − Im(c)arg(ξ − z)− Im(d)arg(ξ −w)

]
+ θ0.

We now consider RMF approximations forhelical PH quintics (Farouki et al., 2003), which a
characterized by the property that their tangents make a constant angle relative to a fixed line (
of the helix) in space. If a polynomial curve is helical, it must be a PH curve (Farouki et al., 2
A sufficient condition (Farouki et al., 2003) for a general PH quintic to be helical is that the qua
polynomial

A(ξ)= A0(1− ξ)2 +A12(1− ξ)ξ +A2ξ
2

employed in (10) has linearly-dependent quaternion coefficientsA0,A1,A2.

Example 2. To define a helical PH quintic, we choose

A0 = 1.09868i + 0.455090k,

A2 = −0.774033+ 0.328603i + 0.779681j − 0.314967k,

A1 = −2.60038(A0 +A2).

This corresponds to the “good” helical PH quintic interpolant to the Hermite datar(0) = (0,0,0),
r′(0) = (1,0,1) andr(1) = (1,1,1), r′(1) = (0,1,1)—see Example 4 in (Farouki et al., 2003). In t
partial fraction expansion (23) we then have

z, z̄ = −0.234351± 0.356555i and c, c̄ = ±0.431258i,

w, w̄ = 1.23435± 0.356555i and d, d̄ = ±0.431258i.

In this example, the structure of the rootsz, z̄ andw, w̄ is a consequence of the symmetry of the Herm
data that define the curve. However, the fact that the residuesc andd are pure imaginary numbers, of th
same magnitude, is a generic property of helical PH quintics:



R.T. Farouki, C.Y. Han / Computer Aided Geometric Design 20 (2003) 435–454 447

ss of
fy

equation

bove

such
Lemma 2. For general helical PH quintics, we haveRe(c) = Re(d) = 0 and |Im(c)| = |Im(d)|.
Proof. Any polynomial helix is necessarily a PH curve (Farouki et al., 2003), and without lo
generality we may choose the helical axis in the positivex-direction. The components of (9) then satis

u2 + v2 − p2 − q2 = cosψ
(
u2 + v2 + p2 + q2),

whereψ is the constant angle that the tangent makes with the axis. We can re-arrange the above
to yield

(p − tu)(p + tu) = (tv − q)(tv + q)

or

(p − tv)(p + tv) = (tu− q)(tu + q),

wheret = tan1
2ψ . For a general PH quintic helix (i.e., with a doubly-traced tangent indicatrix), the a

equations generate four pairs of solutions:

(p, q) = ±t (u, v) or (p, q) = ±t (−v,u). (25)

Now since the functiong/h = −1
2α is invariant under spatial rotations, we can rotate the curve

that the helical axis is aligned with the positivex-axis. Then conditions (25) hold, and we have

g

h
= 1− t2

1+ t2

u′v − uv′

u2 + v2
= cosψ

d

dξ
arctan

u

v
.

As in (23), we can write

c

ξ − z
+ c̄

ξ − z̄
+ d

ξ −w
+ d̄

ξ − w̄
= g(ξ)

h(ξ)
= cosψ

d

dξ
arctan

u(ξ)

v(ξ)
,

and by the Residue Theorem, we have

c = 1

2π i

∮
γ

g

h
dξ = cosψ

2π i

∮
γ

d

dξ
arctan

u

v
dξ

for a sufficiently small closed curveγ enclosing the pointz (γ is parameterized on the interval[0,1] and
has winding number 1 with respect toz).

Now sincez, z̄ andw, w̄ are roots ofh, we have

u2

v2
= −1

at those points, and we may assume that

u(z)

v(z)
= u(w)

v(w)
= i and

u(z̄)

v(z̄)
= u(w̄)

v(w̄)
= −i.

The arctangent function has poles at±i, and branch cuts from+i to +i∞ and from−i to −i∞. To apply
the fundamental theorem of calculus∮

γ

d

dξ
arctan

u

v
dξ = arctan

u(γ (1))

v(γ (1))
− arctan

u(γ (0))

v(γ (0))
, (26)
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the image ofγ under the mapu/v should not cross the branch cuts—i.e., we should choose the sta
end points ofγ such thatu/v at those points lies on the branch cut from+i to +i∞. Then the image
of u(γ (1))/v(γ (1)) andu(γ (0))/v(γ (0)) under the arctangent function are, respectively, on the l
Re(ξ) = +1

2π and Re(ξ)= −1
2π with the same height. Hence, the value of the integral (26) isπ , and we

obtainc = −1
2 cosψ i. Identical arguments for the polew yield d = −1

2 cosψ i. ✷
The above observation leads to the following interpretation for helical PH quintics. The quantit∫

g(ξ)

h(ξ)
dξ = −2 Im(c)

[
arg(ξ − z)± arg(ξ −w)

] + θ0

is just half the angular difference between the ERF and the RMF. Asξ traverses the real line from 0 to
the scaled sum (or difference) of the angular position ofz andw (the two independent complex roots
h) relative toξ is just this angular difference.

Lemma 1 is a special case of the “sum of residues rule” for real rational functions with num
of degree two or more less than the degree of the denominator. For such rational functio
residues always sum to zero. Lemma 2 is not so obvious—we are not aware of any simple geo
interpretation or consequence of this lemma.

Once the rational approximationa(ξ)/b(ξ) to (15) has been computed, we can use the approxim
φ(ξ) = 2arctana(ξ)/b(ξ) to the angular deviation of the RMF from the ERF to construct the rati
approximation[

û

v̂

]
= 1

a2 + b2

[
b2 − a2 2ab

−2ab b2 − a2

] [
u

v

]
of the RMF, the ERF components(u,v) being given by (13). Sincea, b are polynomials inξ , and(u,v)
depend rationally onξ , it is clear that(û, v̂) have a rational dependence onξ .

5. Computed examples

To interpolateC1 Hermite data atξ = 0 and 1 (four conditions), we must choosea(ξ) linear andb(ξ)
quadratic, or vice-versa. Instead, we take botha(ξ) andb(ξ) quadratic, with an additional condition
interpolation at the midpoint,ξ = 1

2. For the rational Hermite interpolation, we then have

ξ0 = 0, ξ1 = 1
2, ξ2 = 1,

x0 = x1 = 0, x2 = 1
2, x3 = x4 = 1,

and input data

f (0), f ′(0), f
(

1
2

)
, f (1), f ′(1).

Note thatf (k)(ξ∗) can be computedexactlyfor any ξ∗ andk = 0,1, . . . . Eqs. (21) and (22) can then b
written as follows:

a(ξ) = c0,0A+ (c0,1A+ c1,1B)ξ + (c0,2A+ c1,2B + c2,2C)ξ2

and

b(ξ)= A+Bξ +Cξ2,
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where

A = c1,3c2,4 − c1,4c2,3, B = c2,3c0,4 − c2,4c0,3, C = c0,3c1,4 − c0,4c1,3.

Example 3. From Example 1, we have

g(ξ)

h(ξ)
= −0.487492− 0.231158ξ − 0.674078ξ2

0.455746− 0.438713ξ + 0.514187ξ2 + 0.942248ξ3 + ξ4

and integration gives

1
2θ(ξ) = 2

[
0.0125113 ln

∣∣∣∣ξ + 0.830350− 0.828652i

ξ − 0.359226− 0.449591i

∣∣∣∣ − 0.219377arg(ξ + 0.830350− 0.828652i)

− 0.312214arg(ξ − 0.359226− 0.449591i)

]
− 0.374956π.

Then we obtain the values

f (0) f ′(0) f (1
2) f (1) f ′(1)

+0.663502 −1.54056 −0.112565 −0.663502 −0.810949

and the interpolant becomes

a(ξ)

b(ξ)
= 0.663502− 1.37560ξ − 0.468837ξ2

1+ 0.248617ξ + 0.531233ξ2
.

The error between the exact angleθ(ξ) and its approximationφ(ξ) is extremal at points wher
θ ′(ξ)− φ′(ξ)= 0, which is equivalent to

g(ξ)

h(ξ)
= a′(ξ)b(ξ)− a(ξ)b′(ξ)

a2(ξ)+ b2(ξ)
.

This is, in general, an algebraic equation of degree 6, which can be solved numerically to any
accuracy. In this example, the roots on[0,1] are

ξ = 0, 0.273067, 0.662032, 1

(where 0 and 1 appear by virtue of the fact thatφ(ξ) is, by construction, aC1 Hermite interpolant
to θ(ξ) at these points). The error attains its maximum magnitude 0.0136704 atξ = 0.273067,
corresponding to about 0.58% of the total variation ofθ over the intervalξ ∈ [0,1]—in this case,
θ(0) − θ(1). The graphs ofθ(ξ) and its approximantφ(ξ) are compared in Fig. 1—they are virtual
indistinguishable. To emphasize the approximation error, Fig. 1 also compares the derivatives
functions.

Example 4. From Example 2 we have

g(ξ)

h(ξ)
= −0.563650+ 0.615068ξ − 0.615068ξ2

0.300523+ 0.324281ξ + 0.675719ξ2 − 2ξ3 + ξ4



450 R.T. Farouki, C.Y. Han / Computer Aided Geometric Design 20 (2003) 435–454

ble

lly

val

, along
f both

oice for
Fig. 1. Left: the exact angle functionθ(ξ) and its approximationφ(ξ) in Example 3—the graphs are virtually indistinguisha
at the scale shown. Right: comparison of the corresponding derivatives,θ ′(ξ) andφ′(ξ).

Fig. 2. Left: the exact angle functionθ(ξ) and its approximationφ(ξ) in Example 4—again, the two graphs are virtua
indistinguishable. Right: comparison of the corresponding derivatives,θ ′(ξ) andφ′(ξ).

and integration yields
1
2θ(ξ) = −2 · 0.431258

[
arg(ξ + 0.234351− 0.356555i) + arg(ξ − 1.23435− 0.356555i)

] + θ0.

Again, by choosingθ0 = −0.862515π , the argument of the tangent function lies in the inter
±0.194414π , and we have the values

f (0) f ′(0) f (1
2) f (1) f ′(1)

+0.700063 −2.79476 0 −0.700063 −2.79476

for which the interpolant becomes

a(ξ)

b(ξ)
= 0.700063− 1.40013ξ

1+ 1.99215ξ − 1.99215ξ2
.

In this case, the maximum error magnitude 0.00388068 is about 0.16% of the total variation ofθ over
ξ ∈ [0,1], and occurs atξ = 0.250204 and 0.749796. Fig. 2 comparesθ(ξ) andφ(ξ), together with their
derivatives, in this case.

Fig. 3 compares the variation of the Frenet frame, ERF, and rational approximation to the RMF
the curve of Example 4. Compared to the rotation-minimizing frame, the “unnecessary” rotation o
the Frenet and Euler–Rodrigues frames is clearly apparent. The RMF is evidently a superior ch
use in applications such as animation, motion planning, and construction of swept surfaces.
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Fig. 3. Comparison of Frenet frame (left), Euler–Rodrigues frame (middle), and rational approximate rotation-minimizin
(right) along the helical PH quintic of Example 4. For clarity, the tangent is omitted in each case. Rational approximatio
RMF clearly offers the most “reasonable” variation of a basis in the curve normal plane at each point.

Example 5. As a final example, consider a PH quintic Hermite interpolant to the end pointspi =
(−1,0,0), pf = (1,0,0) and derivativesdi = df = (1,1,0). Choosing parametersφ0 = φ2 = −π/4
and φ1 = −π/2 in the Hermite interpolation algorithm (Farouki et al., 2002b) yields the quater
coefficients

A0 = A2 = 0.776887+ 0.776887i + 0.321797j + 0.321797k,

A1 = 2.54659− 1.16533i − 0.482696j − 0.651072k.

The remaining Bézier control points are thenp1 = −p4 = (−0.8,0.2,0.0) andp2 = −p3 = (−0.512415,
0.112735,−0.265059). This example is constructed specifically to exhibit an inflection: the curva
vanishes atξ = 0.5.

In this case, we have

g(ξ)

h(ξ)
= 5.65912− 11.3182ξ

1.41421− 2.82390ξ + 36.8149ξ2 − 67.9819ξ3 + 33.9910ξ4
,

and integration gives

1
2θ(ξ) = 2 · 0.416848

[
arg(ξ − 0.998568+ 0.200273i) − arg(ξ − 0.00143157+ 0.200273i)

]
− −0.496695

π
.

The rational Hermite approximation tof (ξ) is then

a(ξ)

b(ξ)
= −0.448764+ 4.19880ξ − 4.19880ξ2

1+ 1.35636ξ − 1.35636ξ2
.

Fig. 4 comparesθ(ξ) with its approximationφ(ξ), and also their derivatives, while Fig. 5 shows (fro
left to right) the Frenet frame, ERF, and rational RMF approximation. Note that the Frenet frame
upon passing through the inflection, at which point it is indeterminate.

The approximation scheme can achieve any prescribed accuracy by subdividing the[0,1] domain
into sub-intervals, and constructing rational(2,2) approximants over those intervals. We have obse
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Fig. 4. Left: exact angle functionθ(ξ) and its approximationφ(ξ) for Example 5. Right: the corresponding derivatives,θ ′(ξ)
andφ′(ξ).

Fig. 5. Comparison of the Frenet frame (left), the Euler–Rodrigues frame (middle), and the rational approxima
tion-minimizing frame (right) on the PH quintic of Example 5 (for clarity, the tangent is omitted in each case). No
sudden “flip” in the Frenet frame at the inflection point.

empirically that this approach often gives faster convergence to the exact RMF than higher-order
approximants. Since the one-point Padé approximant of order(m,n) to a functionf (ξ) agrees with all
terms in its Taylor series up to and includingξm+n, the approximant will have O(|ξ/R|m+n+1) error
for |ξ | < R, whereR is the radius of convergence7 of the Taylor series (Baker and Graves-Morr
1996). The convergence rates for multi-point Padé approximants or rational Hermite interpolan
not been investigated as thoroughly, but it seems likely that they are equivalent to those of one-po
approximants of the same order.

6. Closure

Adapted orthonormal frames are required in various applications involving three-dimensional m
along space curves. In order for an adapted frame to have a rational dependence upon the curve p
the curve must be a Pythagorean-hodograph (PH) curve. For most applications, therotation-minimizing
frame(RMF) is the most desirable among all possible adapted frames. Although PH curves adm

7 Padé approximants may converge even outside the radius of convergence of the Taylor series—this fact is often
practical approach to analytic continuation.



R.T. Farouki, C.Y. Han / Computer Aided Geometric Design 20 (2003) 435–454 453

te low-
scheme

ractical

902669,
ugh the

Analysis

eometric

ves and

, Spline

r quadrics.

esign 13,

82–395.

eometric

er Aided

ograph

dograph

constant

ph cubic
derivations of the RMF, they incur transcendental functions. In this paper, a procedure to compu
degree rational RMF approximations for PH curves has been presented. In typical cases, the
offers compact rational RMF approximations of excellent accuracy, that are well-suited to use in p
algorithms for computer-aided design, computer graphics, and visualization.
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