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Abstract

An adapted framg(t, u,v) on a space curve(§) is a right-handed set of three orthonormal vectors, where
t is the unit tangent and, v span the curve normal plane. For such frames to have a rational dependence on
the curve parameter(&) must be a Pythagorean-hodograph (PH) curve, since only PH curves have rational unit
tangent vectors. Among all possible adapted framespthdon-minimizing framéRMF) is the most attractive for
applications such as animation, swept surface constructions, and motion planning. The PH curves admit exact RMF
descriptions, but they involve transcendental (logarithmic) functions. Since rational forms are generally preferred,
the problem of rational approximation of RMFs for PH curves is considered herein. This is accomplished by
employing theEuler—Rodrigues fram@ERF) as a reference (the ERF is rational and, unlike the Frenet frame, does
not suffer indeterminacies at inflections). The function that describes the angular deviation between the RMF and
ERF is derived in closed form, and is approximated by Padé (rational Hermite) interpolation. In typical cases, these
interpolants furnish compact approximations of excellent accuracy, amenable to use in a variety of applications.
0 2003 Elsevier B.V. All rights reserved.
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1. Introduction

An adapted framen a regular space curvés) is a right-handed orthonormal system of vector fields
t(&), u€), v(&), wheret(¢) =r’(&)/|r'(¢)| is the unit tangent. There are many possible choices (Bishop,
1975) foru(¢) andv(¢), compatible with the requirement thigg) = u(¢) x v(&)—they can be derived
from each other by rotations in the curve normal plane at each point.
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The cumulative arc length function along the cur¢g) is defined by
£
N9=/W@W-
0

Throughout this paper, primes indicate derivatives with respect to the curve pargpeetdrdots denote
derivatives with respect to the arc length-such derivatives are related by

d 1 d
ds — [r'(§)| d&
Now the Cartesian components of the frame vectors yield the matrix

tx ux vx
A=[t u v]:[zy uy vy]

I; u; v

and sinceg(t, u, v) form a basis ifR3, the arc-length derivative & must be expressible in the form
A=AC.

From the relationgt| = juj=|v|]=1andt-u=u-v=v-t =0, one can easily see that tlartan
connection matrihas the skew-symmetric form

0O -y B
C=|:y 0 —ai|,

-8 « 0
wherea =U-v, B =V -t, y =t-u. Equivalently, we may write
dt du dv
a:th, a:wxu, a:wxv, Q)

where the angular velocity vectarfor the frame(t, u, v) is defined by
®w=oat+ gu-+yv. (2)

The most familiar case of an adapted frame iskhenet frame for which u andv are the normah
and binormab, respectively, defined (Kreyszig, 1959; Struik, 1988) by

_rxr’

x|

x t, b=txn. 3)

For a polynomial or rational curve(&), however, the framét, n, b) does not depend rationatlpn the
curve parametef. Also, n andb are undefined anflections wherer” is parallel tor’ or vanishes (in
fact, they may experience sudden reversals through such points—see Fig. 5).

For the Frenet frame, we have, 8, y) = (z, 0, k) where

|r/ X r//l and (r/ X r//) . r///
- |r/|3 - Ir’ x r//|2

(4)

1 A special class of curves that do possess rational Frenet frames is discussed in (Wagner and Ravani, 1997).
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are the curvature and torsion. Correspondingly, the angular velocity (2) for the Frenet frame becomes the
Darboux vector

d=«b+rt, %)

and|d| = v«2 + 72 is sometimes called the “total curvature” (Kreyszig, 1959; Struik, 1988).

Now for any adapted framé, u, v) the componend& t of the angular velocity vector (2) corresponds
to an instantaneous rotation wfandv in the normal plane of the curve. This component is not essential
to the definition of an adapted frame—in fact, it is always possible to construct an adapted frame that
lacks this “unnecessary” component. Such a frame, characterized by the propesty=tBais called a
rotation-minimizing fram€RMF). For an RMF, the angular velocity vector can be written as

w=pu+yv=—t-viu+ (- uyv, (6)

where we note that-t = —t - v, sincev - t = 0. Nowt lies in the normal plane spanned byndv (since
It| = 1), and we can writé = xu + vv. By substituting into (6), we find thad = —vu + uv—i.e., for
an RMF,® is just a rotation of by %n in the normal plane. For the Frenet frame, on the other hand, the
second basis vectoris chosen so as to always lie in the directiori,aind this choice means that 0.

The RMF finds important applications in animation and motion control, where the orientation of
a rigid body must be specified as its center of mass executes a given spatial trajectory. Aligning the
body’s principal axes with the RMF at each point offers a natural solution to this problem, that avoids
the “unnecessary” normal-plane rotation and inflectional indetermirfacfabe Frenet frame. Another
application is in the construction of swept surfaces (Klok, 1986), defined by the motion of a “profile”
curve along a “sweep” curve: using the RMF to orient the profile curve within the normal plane avoids
undesired “twisting” of the swept surface. Finally, the RMF provides a solution to the problem of energy
minimization for framed space curves (see Section 2 below).

Unfortunately, the polynomial and rational curves employed in computer graphics, computer-aided
design, robotics, and similar applications do not admit simple closed-form descriptions for their RMFs.
Consequently, several schemes have been proposed to approximate the rotation-minimizing frame of a
given curve, or to approximate a given curve by “simpler” segments (e.g., circular arcs) with known
rotation-minimizing frames (Juttler, 1998; Juttler and Méaurer, 1999a, 1999b; Wang and Joe, 1997).

An exactderivation of the RMF is possible (Farouki, 2002) for spagthagorean-hodograpfPH)
curves(Farouki et al., 2002a, 2002b)—hbut this involves the solution of quartic equations, and the use
of transcendental (logarithmic) functions. PH curves incorporate algebraic structures that offer unique
computational advantages. For example, only PH curves can have rational adapted frames—since only
PH curves have rational unit tangent vectors. Furthermore, the arc lengths of PH curves can be computed
precisely and one can formulate real-time interpolators to drive multi-axis CNC machines along curved
paths, at fixed or varying speeds, from their exact analytic descriptions (Farouki et al., 1998; Farouki and
Shah, 1996; Tsai et al., 2001).

Since rational forms are preferred in computer graphics and computer-aided design applications, we
consider here rational approximation schemes for RMFs on spatial PH curves. We empliyldhe
Rodrigues frameas a reference, which has distinct advantages over the Frenet frame. The ERF was
introduced in (Choi and Han, 2002), and arises specifically from the quaternion representation of spatial
PH curves in a particular Cartesian coordinate system. The angular deviation of the RMF, relative to the

2 See Example 5 in Section 5 below.
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ERF, is derived as a transcendental function, and Padé (rational Hermite) approximations to this function
are constructed. For typical PH quintics, a rational rotation applied to the ERF offers a highly accurate
approximation of the RMF.

This paper is organized as follows. In Section 2 we review the relation between RMFs and the problem
of energy minimization for framed space curves. The function characterizing the angular deviation
between the RMF and ERF is then derived in Section 3. In Section 4 we describe a scheme for
the construction of Padé (i.e., rational Hermite) interpolants to this function, yielding rational RMF
approximations. The performance of this scheme is illustrated through some computed examples in
Section 5. Finally, in Section 6 we summarize our results and make some concluding remarks.

2. Deformation energy of elastic rods

In the theory of plane curves, the energy integral

N

E=O//<2ds ()

is used as a measure of “fairness” for a curve of total lerigthis integral is proportional to the
strain energy stored in a thin elastic beam, bent from an initially-straight configuration into the shape
of the curve (Farouki, 1996). Minimization @& subject to interpolation constraints (and possibly also

S = constant) is a basic approach to the construction of “fair” curves.

Since curvature alone does not characterize the intrinsic geometry of non-planar curves, the question
arises as to how the integral (7) can be generalized into an appropriate fairness measure for space curves.
The theory of elastic spatial rods is much more subtle and involved (Dill, 1992; Landau and Lifshitz,
1986; Lembo, 2001; Love, 1944; Steigmann and Faulkner, 1993) than that of planar beams. A basic
difference between the planar and spatial problems is that, for the latter, the “twist” of the elastic rod about
its center line is an important contribution to the energy. This twist—which should not be confused with
(and is quite independent of) the torsion function in (4)—is specified by superposing an adapted frame
on the curve. Following (Landau and Lifshitz, 1986), we review below the energy integral appropriate to
a “framed space curve,” and highlight the significance of the RMF in this context.

Consider the deformation of a thin initially-straight elastic rod with total leng§tlnd circular
cross section of radius <« S. The deformation includes both bending and twisting of the rod, but
the total lengthS is unchanged. We define coordinai@s ¢, n) in the deformed rod such that, in the
undeformed state, they coincide with Cartesian coordinates, z) where the rod center line lies along
the x-axis. After deformation, the orthonormal franie u, v) associated with the coordinatés, ¢, n)
rotates continuously along the length of the rbik the tangent to the center-line, whileandv span the
cross-sectional plane. This rotation is specified by the angular velocity vector

d¢

ds’

where @& is the (vector) infinitesimal frame rotation associated with an arc length incremsent d
through the relations (1). Now if we express the angular velocity veetor terms of components as
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wgt + wu + w,Vv, the work done in deforming the rod from the initial straight configuration—i.e., the
elastic strain energy stored in the deformed rod—can be written (Landau and Lifshitz, 1986) as

S
Uzi/%GJw§+%EIQf—%wﬁd&
0
E and G are the Young’s modulus and shear modulus (modulus of rigidity) of the material and, for a

circular cross section of radius the quantities

4 —

r
I=— and J=—
4 2

are the second moment of area about a diameter, and second polar moment of area about the center. The
term %El(wg + a)f,) in the integrand represents the bending energy per unit length, %\tﬁlhug is the
twisting energy per unit length. Introducing the material constitutive relation

G— E
T 2(1+v)’
wherev is Poisson’s ratio, the energy integral may be expressed as
4E 5
nr
UzT/ka)g—i—w?—i-w,z]ds, (8)

0
wherek = 1/(1 + v). For most metals ~ 0.3, and hencé& ~ 0.75 can be used as a “canonical” value
for this weighting factor.

It is evident that we cannot speak of the energy of a space curve without also specifying an adapted
frame along the curve: the adapted frame serves to fix the amount of “twisting” of the elastic rod about its
center-line axis,which is an additional source of strain energy. Comparing with (2), we see that;,

B =w¢, ¥y = w,. Thus, if the twist of the elastic rod is defined by the Frenet frame, the integrand in (8)
becomest? + «?, and the twist of the rod evidently makes a non-zero contribution in this case.

Now taking cross products of the first equation in (1) witfives

dt
=01 o)t+1tx —,
ds
and since - @ = w; and d/ds = «n, wherex is the curvature and is the normal vector, we obtain

w = w:t +«Db,

whereb =t x n is the binormal vector. Thus, f@anychoice ofu andv we always have),u+ w,v = «b,

and hence

dt |2

ds

Hence, the integrand in (8) always has the f(kmg +«2, and for a given curve its smallest value at each
point is realized whemw; = 0—i.e., the adapted frame chosen to specify the “twist” is an RMF.

2 2_ 2 _
a)§+wn—x =

3 This twisting is independent (Love, 1944) of the torsiom (4). Whereas the latter is fixed by the intrinsic geometry, the
twist wg can be arbitrarily imposed on a given space curve.
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Since choosing an RMF gives the least possible value for the integral (8), among all possible adapted
frames, it is natural to use this choice in defining an “intrinsic” energy for space curves—that depends
only on their shapes, and is independent of the manner in which they are framedwgkad for an
RMF, andw? + a)ﬁ = 2 for any adapted frame, with this choice the energy integral (8) for space curves
clearly coincides—up to a multiplicative constant—with the energy integral (7) for planar curves.

3. RMF and ERF on PH curves

Since polynomial and rational curves do not, in general, admit rational RMF representations,
approximations are necessary to conform to the prevailing representation schemes in computer-aided
geometric design. For any adapted frame, exactitude of the curve tangentfieisl one attribute that
should not be compromised by the approximation scheme. Since only the PH curves admit rational unit
tangents, our focus henceforth will be on rational RMF approximations for spatial PH curves using the
guaternion representation (Choi et al., 2002).

Given a quaternion polynomial

AE) =u®) +v&)i+ p&)j+q@k )
of degreed, integration of the hodograph
r'E) = A@)iA* ), (10)

whereA* (&) = u(&) —v(€)i — p(&)j — g &)k, defines a PH curve¢) of degree 2 + 1. The hodograph
components satisfy the Pythagorean condition

X'2E) +Y'2(E) + 7)) = 0%(8), (11)

where

X(§) =u(E) +v3©) — pP() — ¢*(®),

Y'(€) =2[u@)q () +vE)p@&)),

7€) =2[vE)q(&) —u@)p®)],

o (§) =u?(§) +v*(E) + p*(§) + ¢°(§). (12)
The above form is sufficient and necessary (Dietz et al., 1993) to satisfy (11), and is invariant (Farouki
et al., 2002a) under general spatial rotations. The quaternion representation (10) for the form (12), and
its resulting rotation invariance, have also been noted by Wallner and Pottmann (1997), in the context
of blending surface constructions for quadrics. Additional details on the construction and properties of
spatial PH curves in the quaternion representation may be found in (Farouki et al., 2002a, 2002b, 2003).

Corresponding to the hodograph (10), an adapted rational frame(&r-the so-called Euler—
Rodrigues frame (ERF)—is defined (Choi and Han, 2002) by

AE)IA* ) CA®IA ) AGKA*E)
d04@ O aere  YOTaeae

Unlike the Frenet frame, the ERF is defined at every point of a PH curve. Moreovdk)ifis of
degree 2 + 1, the ERF has a rational dependence of degreer2the curve parameter. For a given
a PH curve, the ERF is not uniquely defined, since the quaternion representation of the PH curve is not

t(é) = (13)
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unique (Farouki et al., 2002a). However, this ambiguity is not essential, since each pair of ERFs maintain
a constant angular difference along the curve.

Now the quantitiega, B, y) = (w, o, w,) introduced in Sections 1 and 2 were defined in terms of
arc-length derivatives. It is more convenient, henceforth, to define them in terms of parametric derivatives.
For a PH curve, the two definitions differ only by a factoroafthe parametric speedf the curve. For
the PH curve specified by (10), we then have (Choi and Han, 2002):

uv' —u'v—pq’ '+ p'q
v=2
u? +v2 4 p2+ g2

a=U

A non-trivial PH curve havingr = 0 (i.e., the ERF and RMF are coincident) must be (Choi and Han,
2002) of degree> 7. Since no algorithms are currently available that allow this class of curves to be
used in practical design problems, we focus on the PH quintics—for which such algorithms are known
(Farouki et al., 2002b, 2003)—and seek rational rotations of the ERF aiimttclosely approximate an
RMF.

Let (t, 0, V) be a rotation of the ERF about the tangent, such that

o a) ] [ cosve) sino@) Tl uc)

e =16, [\7(5)] = [—Siné(é) 0059(5)} [v@)} ‘
Then, as expected, we have

a=0-V=0"+a,

i.e., the angular speed (abaytof the rotated frame is its angular speed with respect to the reference
frame, plus the angular speed of the reference frame itself. Hence, the rotated frame coincides with the
RMF if and only if6(£) satisfie$

wv—uv' —p'qg+ pq’

14
u? +v2 4 p2+ g2 a4

0 = —a=

An exact computation of (¢) requires the integration of a rational function of degrée Ia general,
this integration incurs transcendental (logarithmic) function&(#), so we cannot expect cé&) and
siné (&), and the RMF, to be rational. For details of this exact integration—using the Frenet frame, rather
than the ERF, as a referefieesee (Farouki, 2002).
Instead of exact integration, we employ rational approximationgl(&l be an approximation af(¢),
such that

a*(§) — b*(&) 2a(§)b(6)

)= e rre OO ae e

4 Since the RMF is characterized by a differential constraint, there is a one-parameter family of RMFs, corresponding to the
choice of an initial orientation on integrating (14).

5 The angular difference between the RMF and the Frenet frame is simply the integral of the torsion with respect to arc length
(Farouki, 2002; Guggenheimer, 1989).
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for some polynomialga (&) andb(&¢). In other words, we are trying to construct a rational parameterization
of the circle® such that the corresponding angular variatip¢g) closely approximates the known
(transcendental) functiof(¢). One can easily verify that

1o/ = ab—abl 4 retar®

2 a?+b? b’

and hencep is a good approximation of if and only if a/b is a good rational approximation of the
function

f(§)=tan36(¢) =tan / %da (15)
where

g&) =u'(E)v(E) —u@)v'€) — p'E)qE) + p&)q ), (16)
and

h(E) = u?(E) +v2(&) + p*(&) + 4°(©). (17)

As a measure of the quality of approximation, we compare the exact furatfon= 2 [ g(§)/h(§) d§
with the approximatiorp (¢§) = 2 arctaru(£)/b(§).

4. Rational Hermite interpolation scheme

The possibility of rational adapted frames on space curves was first observed in the early study
(Farouki and Sakkalis, 1994) of spatial PH curves, which employed a representation that is sufficient
(but not necessary) for a Pythagorean hodograph. Juttler and Maurer (1999b) subsequently described
RMF approximations for PH cubics. Since PH cubics have rather limited shape flexibility, we focus here
on general rational RMF approximations for quintic or higher-order PH curves.

To approximate (15) by a rational functiaii& ) /b (&), we use multi-point Padé approximation, which
is equivalent to rational Hermite interpolation. For background on this topic, the reader may consult
(Baker and Graves-Morris, 1996; Brezinski and Van Iseghem, 1994; Cuyt, 1992).

Consider a functionf (¢§) and a set of distinct points,, ..., & € [0, 1] where, at each poirg;, the
function value and derivativeg® (¢,) are given fork =0, ...,s; — 1 (s; > 0). The rational Hermite
interpolation problem of ordein, n) for f (&) amounts to the construction of polynomials

ag)=Y) a& and bE) =) b,
i=0 i=0
such that

Zsizm—i-n—i-l (18)
i=0

6 Rational parameterizations of circles are discussed extensively in the literature (Bangert and Prautzsch, 1997; Chou, 1995;
Fiorot et al., 1997; Piegl and Tiller, 1989). The goal in these studies is typically to achieve nearly-uniform parameterizations,
while our present goal is to obtain rational approximations sfpecificparameterization.
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and

®)
f(k)(éi)=(%> (&) fork=0,....,5,—1;,i=0,...,r (19)

Note that the sum of degrees @fand b is minimal to satisfy the interpolation conditions. Instead of
directly using (19), we consider the conditions

(fb—a)P@E)=0 fork=0,...,s5s—1 i=0,...,r (20)

These conditions define a homogeneous system-bf: + 1 linear equations in the + n + 2 unknown
coefficientsa; andb; of a(¢) andb(¢), and hence they always admit at least one non-trivial solution. In
fact, if a1 (&), b1(§) anday (&), bo(§) both satisfy (20), thewm,(§)b2(§) = ax(§)b1(§)—i.e., all rational
solutions of (20) have the same irreducible form.

Having computed a rational interpolaat/b from the linear interpolation conditions (i.e., the
conditions expressed in terms ¢b — a instead of f — a/b), it may happen in certain exceptional
cases that an interpolation point is also a common zescaofdb. At such points, the irreducible form of
a/b may not interpolate the correct value. This problem may be remedied by checking for coincidence
of the roots of gcz, b) with any of the node$y, ..., &. When such coincidences occur, a higher order
(m, n) for the rational interpolant is needed to achieve the prescribed interpolation conditions.

Now let xo, ..., x4, be a list of the distinct interpolation nodég ..., & with each node repeated
according to its multiplicity, i.e.,

X0 o+ vy Xsg—1> Xsgr »+ + 5 Xsgtsi—1s + « s Xsghds,_19 + » + s Xsg+-ts,_1485—1 -
=& =& =§,

Then, for the given set of nodes and multiplicities, the divided differencgg®f are defined (Stoer and
Bulirsch, 1992) recursively by

Slxil=f(x),
and
FO ) :
‘ Ifxi="'=Xi+k’
f[xl',...,xi+k]: f[)]: Xiix] _f[x xX: ]
i+l - Xigh Do 7L Gtherwise
Xitk — Xi

It is convenient to introduce the more compact notation

0 i> ],
Ci’jz{f[xi,...,xj] i <J.
If we then set
1 j=0,

)
B; (&)= [T — -0 otherwise

k=1
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and
0 i> ],
_ J
Fi®=1 S cbae i<,

k=i

the numerator and denominator of the rational interpaldéi/b (&) can be formulated (Cuyt, 1992) as
the determinants

FO,m(%-) Fl,m(‘i:) an(%-)

Co,m+1 C1m+1 te Cn,m+1
a§) =| com+2  Cim+2 * Camt2 |

CO,m+n Cl,m+n ce Cn,m+n

and

Bo(§) Bi(§) - Bu(§)

Com+1 Cim+l - Cum+l
b()=|coms+2 Cim+2 *** Cams2|-

Com+n  Clm+n o Cnm+n

An explicit expansion of the determinants is not necessarily a good approach to conaggéliagdb (&),
especially for largen andn. However, we are primarily interested in the low-degree easen = 2, for
which we obtain the simple closed-form expressions

a(§) = coolc1,ac2,3 — c1,3¢2.4]
+ [c0,1€1,4¢2,3 + €0,3€1,1C2,4 — €0,4€1,1C2,3 — €0,1€1,3¢2,4](§ — X0)
+ [co,2€1,4¢2,3 + €0,3C1,2C2,4 + €0,4€1,3C2,2
— €0,3C1,4C2,2 — €0,4C1,2€2,3 — €0,2€1,3¢2,4](§ — x0)(§ — x1) (21)

and

b(§) = c1,4c23 — €1,3¢2,4 + [€0,3¢2,4 — C0,4¢2,3](§ — X0)
+ [co.4¢1,3 — co,3¢1,4](§ — x0)(§ — x1). (22)

To compute interpolant values and derivatives for the function (15) that we wish to approximate, we
begin by noting that since the denominator of the integrand in (15) is quatrtic, it can be factorized by using
Ferrari's method (Uspensky, 1948) to compute its raets,, z3, z4. In general, these roots are distinct,
and we can use a partial fraction expansion to write the integrand as

g6 <
h(E) ‘;s

_Zk’
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the coefficients (residues) being found by clearing the denominators, and setimgjual to each root
in succession, to obtain

g(z1)

H(Zk—Zj),

Jj#k
Integration then gives

fflg ds = 00+chln(f;‘ — 20,

whered, is an integration constant. Assuming that gcd, p, ¢) = constant, the roots aéf must occur

as complex conjugate pairs, and the corresponding residues are also complex conjugates. Logarithmic
terms that correspond to such pairs can be combined to give explicitly real expressions—for example, if
z, z andc, ¢ are conjugate roots and residues, we have

cIn —z)+¢cInE —2) =2[Re(c) In & — z| — Im(c) arg(§ — 2)].

Denoting the other pair of roots and corresponding residues, by andd, d so that
§® _ ¢ & d d
hE) E—z E-7 E-w £-w

we have

Ci = k=1,,4

(23)

f ig ds = 2[Re(c) In|é — z| + Re(d) In|§ — w|
—Im(c) arg§ — z) — Im(d) arg(é — w)] + bo. (24)

Since this integral is subject to evaluation by the tangent function, one must be careful to choose the
integration constarfly such that the integral does not cr@sst %)n in the interval¢ € [0, 1] of interest.

This can be done by evaluating the extrema of the integral, which are located at the real gggisoof

& € (0, 1) or at the interval endpoints = 0 andé = 1. In case the range of values of the integral is not
contained within an interval of the forigz — %)n <E<(m+ %)n, a further subdivision of € [0, 1] is
necessary.

Example 1. Consider the general PH quintic defined by

u(£) = 4.86877+ 4.78126 + 3.3233G 2,
V() = —6.43321+ 5.52435 + 2.8574%2,
p(§) = 2.83170— 9.9804% — 7.289767,
q(£) = —1.53492— 2.7359& + 9.655932.

Forming the polynomials (16) and (17), we have

z,z=—0.830350+ 0.828652i and c¢,c=0.0125113+ 0.219377j
=0.3592264 0.449591i and d,d = —0.0125113+ 0.312214i
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in the partial fraction decomposition (23). The numerat@y) does not have real roots, and the right—
hand side of (24) has the value$61425r + 6y até = 0 and 0188488r + 6, até = 1. Hence, by setting
0o = —0.374956r, the integral remains in the rang€).186469¢ .

As evident from the above example, further structure can be discerned in the partial fraction
decomposition (23) for general PH quintics.

Lemma 1. For general PH quintics, the residuesandd in expressior(24) satisfyRe(c) + Re(d) = 0.

Proof. For general PH quintics, we have deyy= 2 and degh) = 4. Settingh(£) = k(& —z)(§ —2)(§ —
w) (¢ — w) and clearing denominators in (23) gives

g(&) =k(c+¢+d+ d)&3 + lower order terms

Since g(£) is just quadratic, we must hawe+ ¢ +d + d = 2Relc + d) = 0, and hence Re) +
Re(d)=0. O

Hence, expression (24) can be simplified somewhat to yield

8&) £E—z
f e © Z[Re(c) "z

We now consider RMF approximations fbelical PH quintics (Farouki et al., 2003), which are
characterized by the property that their tangents make a constant angle relative to a fixed line (the axis
of the helix) in space. If a polynomial curve is helical, it must be a PH curve (Farouki et al., 2003).
A sufficient condition (Farouki et al., 2003) for a general PH quintic to be helical is that the quadratic
polynomial

A) = Ao(1— §)® + A12(1 - §)§ + A%°
employed in (10) has linearly-dependent quaternion coefficidgisdy, A,.

—Im(c) arg(¢ — z) — Im(d) arg(é — w)} + 6o.

—w

Example 2. To define a helical PH quintic, we choose

Ap=1.09868 + 0.45509(,

Ay = —0.774033+ 0.328603 + 0.779681 — 0.31496'K,

A1 =—-2.60038 A4 + A>).
This corresponds to the “good” helical PH quintic interpolant to the Hermite d&@ea= (0, 0, 0),
r'0)=(1,0,1) andr(1) =(1,1,1), r'(1) = (0,1, )—see Example 4 in (Farouki et al., 2003). In the
partial fraction expansion (23) we then have

7,z =—0.234351+ 0.356555i and c, ¢ = +0.431258]

w, w = 1.23435+ 0.356555i and d,d = +0.431258i
In this example, the structure of the roatg andw, w is a consequence of the symmetry of the Hermite

data that define the curve. However, the fact that the residaadd are pure imaginary numbers, of the
same magnitude, is a generic property of helical PH quintics:
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Lemma 2. For general helical PH quintics, we hawe(c) = Re(d) = 0 and|Im(c)| = |Im(d)]|.

Proof. Any polynomial helix is necessarily a PH curve (Farouki et al., 2003), and without loss of
generality we may choose the helical axis in the posithdirection. The components of (9) then satisfy

u® + v — p2 - q2 = COSI//(MZ + 02+ p2 +q2),
whereys is the constant angle that the tangent makes with the axis. We can re-arrange the above equation
to yield

(p—tu)(p+tu)=(tv—q)(tv+q)
or

(p—tv)(p+tv) = (tu — q)(tu +q),

wherer = tan%x/f. For a general PH quintic helix (i.e., with a doubly-traced tangent indicatrix), the above
equations generate four pairs of solutions:

(p,q)==xt(u,v) or (p,q)==xt(—v,u). (25)
Now since the functiory/h = —%a is invariant under spatial rotations, we can rotate the curve such
that the helical axis is aligned with the positiveaxis. Then conditions (25) hold, and we have

g 1—12u'v—uv
h 1412 u2+402

As in (23), we can write

= cosyr 4 aretan”
N dg v

c ¢ d d _g® __d u()
f iz Ei—w Et—w he O saCta" @’

and by the Residue Theorem, we have

— ¢ = 5 = cosw % — arctan— dg
27r|

fora suff|C|entIy small closed curve enclosing the point (y is parameterized on the intenj@, 1] and
has winding number 1 with respectih
Now sincez, z andw, w are roots of:, we have
2

L1
v
at those points, and we may assume that

n@ _uw) ;g 4@ _u(@)

v(z)  v(w) v(@)  v(w)
The arctangent function has polestaf and branch cuts from-i to +ioco and from—ito —ico. To apply
the fundamental theorem of calculus

f % arctan% dg = arctanM arctanm (26)

v(y (D) v(y(0)’
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the image ofy under the map /v should not cross the branch cuts—i.e., we should choose the start and
end points ofy such thatu/v at those points lies on the branch cut framto +ioco. Then the images

of u(y(1))/v(y (1)) andu(y (0))/v(y(0)) under the arctangent function are, respectively, on the lines
Re§) = —i—%rr and Rg&) = —%n with the same height. Hence, the value of the integral (26) snd we
obtainc = —% cosyi. Identical arguments for the pole yield d = —% cosyi. O

The above observation leads to the following interpretation for helical PH quintics. The quantity

/ % ds = —2Im(c)[arg& — z) + arg§ — w)] + 6o

is just half the angular difference between the ERF and the RME.tfeverses the real line from 0 to 1,
the scaled sum (or difference) of the angular positiop ahdw (the two independent complex roots of
h) relative tog is just this angular difference.

Lemma 1 is a special case of the “sum of residues rule” for real rational functions with numerator
of degree two or more less than the degree of the denominator. For such rational functions, the
residues always sum to zero. Lemma 2 is not so obvious—we are not aware of any simple geometrical
interpretation or consequence of this lemma.

Once the rational approximatiar(¢)/b(¢) to (15) has been computed, we can use the approximation
¢ (&) = 2arctaru(£)/b(¢) to the angular deviation of the RMF from the ERF to construct the rational
approximation

a1 1 [b*—a® 2ab u

V] a?+b2| —2ab b*—da?] |V
of the RMF, the ERF componengs, v) being given by (13). Since, b are polynomials ir§, and(u, v)
depend rationally 0§, it is clear that((, V) have a rational dependence &n

5. Computed examples

To interpolateC* Hermite data a§ =0 and 1 (four conditions), we must choasg) linear andb(£)
quadratic, or vice-versa. Instead, we take both) and b(¢) quadratic, with an additional condition:
interpolation at the midpoing = % For the rational Hermite interpolation, we then have

&0=0, £1=3, &r=1,

NIk NI

xo=x1=0, X2 =3, x3=x4=1,

and input data
fO,  fO,  f3).  fO, .

Note that f ¥ (&,) can be computedxactlyfor any £, andk =0, 1, .... Egs. (21) and (22) can then be
written as follows:

a(€) = co0A + (co1A + c1.1B)E + (co2A + c12B + c220)E?
and
b(§) = A+ B& + C&2,
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where
A =c13C24— C1,4C23, B = ¢33¢0,4 — €2,4¢0,3, C = co,;3¢1,4 — €0,4C1,3.

Example 3. From Example 1, we have

g _ —0.487492— 0.231158 — 0.6740782
h(€) 0.455746— 0.438713 + 0.51418%2 + 0.9422483 4 &4
and integration gives

& + 0.830350— 0.828652i
& —0.359226— 0.449591i

%0(‘;‘) = 2[0.0125113 Ir{ ‘ —0.219377 argt + 0.830350— 0.828652)

—0.312214 argg — 0.359226— 0.449591)] — 0.374956r.

Then we obtain the values

SO f'©) /3 S '@
+0.663502 —1.54056 —0.112565 —0.663502 —0.810949

and the interpolant becomes
a(§) 0.663502— 1.3756G — 0.46883%2
b()  1+0.24861% + 0.5312332

The error between the exact angl€¢¢) and its approximationp(£) is extremal at points where
0'(&) — ¢'(¢§) = 0, which is equivalent to
g&) d'@&)bE)—al)b' )
hE) a2 +b2E)
This is, in general, an algebraic equation of degree 6, which can be solved numerically to any desired
accuracy. In this example, the roots [@1] are

£=0, 0.273067 0.662032 1

(where 0 and 1 appear by virtue of the fact tigdt) is, by construction, aC' Hermite interpolant

to 9(¢) at these points). The error attains its maximum magnitude 0.01367@4=a0.273067,
corresponding to about 0.58% of the total variationfobver the intervalé € [0, 1]—in this case,

6(0) — 6(1). The graphs of (&) and its approximand (&) are compared in Fig. 1—they are virtually
indistinguishable. To emphasize the approximation error, Fig. 1 also compares the derivatives of these
functions.

Example 4. From Example 2 we have

g(§)  —0.563650+ 0.61506§ — 0.615068>
n(E)  0.300523+ 0.32428F + 0.67571%2 — 23 + £4
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Fig. 1. Left: the exact angle functigh&) and its approximatiog (¢§) in Example 3—the graphs are virtually indistinguishable
at the scale shown. Right: comparison of the corresponding derivatiés.andg’ (£).

0.5

0.2 0.4
-0.5

Fig. 2. Left: the exact angle functiofi(¢) and its approximatior (&) in Example 4—again, the two graphs are virtually
indistinguishable. Right: comparison of the corresponding derivatiVés) ande’ (£).
and integration yields

16(¢) = —2-0.431258arg(¢ + 0.234351— 0.356555) + arg(s — 1.23435— 0.356555)] + 6.

Again, by choosingfy = —0.862515r, the argument of the tangent function lies in the interval
+0.194414r, and we have the values

O f'©) e S '@
+0.700063 —2.79476 0 —0.700063 —2.79476

for which the interpolant becomes
a(§) 0.700063— 1.40013%
b(€) 1+ 1.9921F — 1.992152
In this case, the maximum error magnitude 0.00388068 is about 0.16% of the total variati@vef

& €0, 1], and occurs & = 0.250204 and 0.749796. Fig. 2 compaf€s) and¢ (€), together with their
derivatives, in this case.

Fig. 3 compares the variation of the Frenet frame, ERF, and rational approximation to the RMF, along
the curve of Example 4. Compared to the rotation-minimizing frame, the “unnecessary” rotation of both
the Frenet and Euler—Rodrigues frames is clearly apparent. The RMF is evidently a superior choice for
use in applications such as animation, motion planning, and construction of swept surfaces.
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1

Fig. 3. Comparison of Frenet frame (left), Euler—Rodrigues frame (middle), and rational approximate rotation-minimizing frame
(right) along the helical PH quintic of Example 4. For clarity, the tangent is omitted in each case. Rational approximation to the
RMF clearly offers the most “reasonable” variation of a basis in the curve normal plane at each point.

Example 5. As a final example, consider a PH quintic Hermite interpolant to the end ppijnts
(—=1,0,0), pf =(1,0,0) and derivativesd; = d; = (1, 1,0). Choosing parameteisy = ¢, = —m /4

and ¢; = —m/2 in the Hermite interpolation algorithm (Farouki et al., 2002b) yields the quaternion
coefficients

Ao=A,=0.776887+ 0.77688T + 0.321797 + 0.32179K,

A1 = 2.54659— 1.16533 — 0.482696 — 0.65107Xk.
The remaining Bézier control points are then= —ps = (—0.8, 0.2, 0.0) andp, = —ps = (—0.512415
0.112735 —0.265059. This example is constructed specifically to exhibit an inflection: the curvature

vanishes a¢ =0.5.
In this case, we have

g 5.65912— 11.318%
h(g)  1.41421— 2.8239G + 36.814%2 — 67.981%3 + 339914
and integration gives

%9(5) = 2-0.416848arg& — 0.998568+ 0.200273) — arg(é — 0.00143157+ 0.200273) ]
—0.496695

- .
The rational Hermite approximation #¢) is then

a(§)  —0.448764+ 4.1988G — 4.1988G:
b(E) 1+ 1.3563G — 1.3563G2

Fig. 4 compare® (¢) with its approximatiorny (¢), and also their derivatives, while Fig. 5 shows (from
left to right) the Frenet frame, ERF, and rational RMF approximation. Note that the Frenet frame “flips
upon passing through the inflection, at which point it is indeterminate.

The approximation scheme can achieve any prescribed accuracy by subdividif@y thelomain
into sub-intervals, and constructing ratiorid] 2) approximants over those intervals. We have observed
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Fig. 4. Left: exact angle functiof(¢) and its approximatiow (£) for Example 5. Right: the corresponding derivative'’ss)
andg¢’(§).

Fig. 5. Comparison of the Frenet frame (left), the Euler—Rodrigues frame (middle), and the rational approximate rota-
tion-minimizing frame (right) on the PH quintic of Example 5 (for clarity, the tangent is omitted in each case). Note the
sudden “flip” in the Frenet frame at the inflection point.

empirically that this approach often gives faster convergence to the exact RMF than higher-order rational
approximants. Since the one-point Padé approximant of @rdet) to a function f (&) agrees with all

terms in its Taylor series up to and includigg ", the approximant will have Q¢/R|"*"*1) error

for €| < R, where R is the radius of convergentef the Taylor series (Baker and Graves-Morris,
1996). The convergence rates for multi-point Padé approximants or rational Hermite interpolants have
not been investigated as thoroughly, but it seems likely that they are equivalent to those of one-point Padé
approximants of the same order.

6. Closure

Adapted orthonormal frames are required in various applications involving three-dimensional motions
along space curves. In order for an adapted frame to have a rational dependence upon the curve parameter,
the curve must be a Pythagorean-hodograph (PH) curve. For most applicatiomgation-minimizing
frame (RMF) is the most desirable among all possible adapted frames. Although PH curves admit exact

7 Padé approximants may converge even outside the radius of convergence of the Taylor series—this fact is often used as a
practical approach to analytic continuation.
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derivations of the RMF, they incur transcendental functions. In this paper, a procedure to compute low-
degree rational RMF approximations for PH curves has been presented. In typical cases, the scheme
offers compact rational RMF approximations of excellent accuracy, that are well-suited to use in practical
algorithms for computer-aided design, computer graphics, and visualization.
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