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Abstract

Shape control techniques for swept surface using profiles are developed in this paper. The characteristics of the swept surface are used to
reduce the shape control of the swept surface to modify the contour shapes by using profiles. This method is more convenient and more
intuitive for the user. The deformed region of the contour is defined by deformation rules proposed in this paper. The robustness and
efficiency of this technique are verified by many examples implemented in the commercial geometric modeling software GEMS 5.0 developed
by the CAD Center of Tsinghua University. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The sweeping operator is a powerful function in
geometric modeling for describing the shapes of complex
surfaces or solids. The swept surface or volume can then be
described by orbit sets which are formed by curves, surfaces
or objects moving through a spine (also called as a space
trajectory). The method is simple and efficient, and requires
only the specification of the moving object and of the spine
along which the object moves. The swept surface can be
expressed as follows:

S(u,v) =r@) + Ci(u,v)B + C,(u, v)N (1)

Where r(u) is the spine or trajectory, c¢;(u,v) and c,(u,v) are
the planar contours which can be deformed and twisted
along the spine, and N and B are the unit vectors of a
moving frame along the spine. The method has many
good characteristics such as:

e Reduces the surface design to curve modification so that
the design problem is simplified.

e Reduces the depth of the CSG feature tree in the geometric
modeling system and reduces the operator steps in the
product design so that the design efficiency is improved.

e The complex shape can be described intuitively in terms of
a contour moving along a spine with twist and deformation.

* Corresponding author.
E-mail address: wgp@graphics.pku.edu.cn (G. Wang).

Many commercial geometric modeling systems contain this
powerful function [9], and many papers have been written on
this topic [1-7]. But, although this operator is useful in
commercial geometrical modeling systems, the shape of the
swept surface must often be modified interactively and a good
modification method can reduce the interactive time and
improve the design efficiency during production design.
Therefore, a flexible and convenient method is needed for
the user to deform the shape of the swept surface.

The non-rational expression in Eq. (1) for the swept
surface is usually approximated by a NURBS surface for
compatibility with the data structures and algorithms in the
geometric modeling systems. With a NURBS surface, the
shape control technique, such as control point relocation and
weight modification can be adopted. But a production
designer or a user of the commercial CAD software may
be unfamiliar with the mathematical basis of NURBS
surfaces, so these surface modification techniques may be
too professional, less intuitive, and difficult to master. Other
methods can be used to control the shape of the swept
surface using a profile or a transform matrix [1,3,6,9]. But
the shape deformation is limited to the scaling deformation
of the contour on the local moving frame along the spine.
Therefore, the ability to modify the swept surface shape is
limited so cannot utilize all of the advantages of the sweep
method and cannot provide an intuitive and convenient
method for shape modification.

This paper presents some shape control methods. But
many problems need to be resolved such as how to define
the deformed point on the surface and how much of the
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region on the contour is deformed by the profiles (referred to
as the deforming curve). These issues will be discussed in
Sections 2 and 3. Furthermore, some deformation rules
introduced in Section 4 are used to determine the deformed
regions on the contours according to the shape of each
profile curve. Finally, several examples are given that
have verified the robustness and efficiency of the method
implemented in the commercial geometric modeling soft-
ware GEMS 5.0 which was developed by the CAD Center of
Tsinghua University.

2. Terms and definitions

The contour C(u,v) in Eq. (1) can be considered to be the
contour C(u) deformed or twisted by the profile curve f(0) or
by a twist angle along the spine. The profile f(r) can be
reparameterized with the spine r(v) such that f (n =
F(r(v)), which is simply denoted as profile curve f(v). One
effective method for constructing the swept surface [2,6,7]
is to form the local moving frame at the selecting points on
the spine and to set the intermediate contours on these local
moving frames by coordinate transformation. The swept
surface is then constructed by skinning all intermediate
contours. Therefore, the shape of the swept surface can be
reduced to the determination of the shape of the intermedi-
ate contours.

Construction of the swept surface involves several issues:

1. Because the distribution of the intermediate contours
affects the shape of the swept surface in the skinning
procedure, the intermediate contours must be distributed
along the spine so that the contour distribution can reflect
the shape change of the spine and the profiles.

2. The profiles effect on the swept surface can be reduced to
just the effect of the contours (Fig. 1). But the maximum
affecting points (referred to as the deforming points) on
the profiles and the maximum affected points (referred to
as the deformed points) on each intermediate contour
must be properly defined relative to the distribution of
the intermediate contours.

3. The deformed distances between each intermediate
contour and the profiles must be determined because
the amount of deformation of each contour is propor-
tional to the distances.

4. The deformed region on each intermediate contour (or
even on the swept surface), which can be relocated by
each profile, must be conveniently and intuitively speci-
fied by the user.

For the first issue, the subdivided algorithm of the curve
[5,7] can be generalized to simultaneously subdivide the
spine and profiles to obtain the split points on the spine and
the profiles. In the recursive-subdivision algorithm, the
distributing of the split points reflects the shape of the spine
and the profiles. If the shape of some region on the spine or on

Colu

Ci(u)

Fig. 1. Profile effect on the distribution of contours.

the profile changes rapidly, the split points on this region
must be densely distributed. Otherwise, the split points can
be sparsely distributed. The intermediate contour and its
moving frame are then located at the split point on the spine.

For the second and third issues, the users desires can be
met using two proposed methods with specifically defined
terms, such as deformed points, deforming points, deform-
ing direction and deformed distance. The first method is
called the parameter method, and the second is called the
intersection method. These two methods can generate differ-
ent deformations on the swept surface.

2.1. Parameter method

For the curve subdivision algorithm, the terms can be
defined as:

Initial contour plane: the plane including the initial
contour;

Deforming point: the split point on the profile;
Deformed point on the initial contour is closest to the
projected point of the initial point of the profile on the
initial contour plane (Fig. 2).

The deformed points on the other intermediate contours
have the same parameters as the first deformed point in the
initial contour. Since split points on the spine and on each
profile form one point pair, each deforming point and the
corresponding deformed point on each profile can form a
point pair for each profile

Deforming distance of ONE split point on the profile —
the distance between the initial projected point of the
profile and the projected point of ONE split point of the
profile on the initial contour plane. The length of the
projection on the initial plane of the vector from the initial
point of the profile to ONE split point of the profile is the
deforming distance of ONE split point of the profile.
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Fig. 2. Definitions of the terms for the parameter method.

Deforming direction — the vector from the deformed
point of the initial contour to the initial projected point
of the profile on the initial contour plane.

The deforming direction is fixed to the local moving
frame together with the intermediate contour, so the other
deformed points on all intermediate contours and their
deforming directions can be defined.

Notice that the deforming distance is dependent on the
projected increment of the split points of the profile on the
initial contour plane as shown in Fig. 2, and may be negative
in accordance with the profile shape change. Some exam-
ples of this method are shown in Figs. 13, 16, 18 and 21.

For multi-profiles, the number of deformed points on each
intermediate contour is the number of profiles.

2.2. Intersection method
The terms for the intersection method are defined as:

Deforming point and deformed point: if the plane includ-
ing the intermediate contour L intersects with one profile,
then the intersection point on this profile is called the
deforming point of the profile and the point on L that is
closest to the deforming point on this profile is called the
deformed point of L. The deforming point and the
deformed point form a point pair for each profile.
Deforming distance: the distance between the deformed
point and the corresponding deforming point.
Deforming direction: the vector from the deformed point
to the deforming point (Fig. 3).

Intermediate contours which do not intersect with the profile
are not deformed by the profile. The intersection method is
especially recommended for 2D spines or spines which
change shape slowly, e.g. Figs. 7—12 and 17.

These two methods have some important differences. The
parameter method determines the deforming distance from
the projected increment of the splits of the profile on the
initial contour plane and considers the relative shape change
of the profile. The parameter method then determines the
deforming direction and the deformed point on the contours

contour
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Fig. 3. Definitions of the terms for the intersection method.

from the initial contour and the projection of the initial point
of the profile. The deforming direction is fixed in the local
moving frame along the spine. The intersection method
determines all terms, such as the deforming point, deformed
distances and so on, from the intersection procedure
between each intermediate contour plane and the profiles.

3. Local deformation of contours

From the unified NURBS expression for the swept
surface, the shape of the swept surface can be changed by
the relocation of its control points or by modifying its
weights, but the procedure is not intuitive for users. The
characteristics of the swept surface can be used to reduce
the local deformation of the surface to deform the intermedi-
ate contours. The local region on the swept surface which is
to be deformed is defined by the user. The following defines
two types of deformation regions on the contours which are
needed by the users.

3.1. Influence region of the local deformation

From the local properties of an NURBS curve, removing a
point on the curve will affect the region near this point on the
curve (Fig. 4). The deformed point on the contour, together
with its deforming direction and its deforming distance can
be computed from Section 2, then the affected region for this
deformed point on the contour can be repositioned by

Fig. 4. Local deformation curve.



896 G. Wang, J. Sun / Computer-Aided Design 33 (2001) 893-902

(a) AV
T
A s i
G O
i .
i -
I x

AY

Fig. 5. (a) Generation of an ellipse. (b) The ellipse as the e-offset of a circle.

removing the closest control point of the deformed point on
the contour [5]. To maintain the smoothness of the deformed
contour, two control points should be removed near the
deformed point on the contour. Suppose we want to remove
the deformed point P = C(ir) along the deforming direction
V with the deforming distance d, then the region near P on
the contour can be relocated by translating both P; and P;.
along direction V. Here, i is the parameter of the deformed
point on the contour (assuming i € [u;, u;4)). For0 = y =
1, then

A

P,=P;+ (1 — yaV, Piyy =Py + yaV @

The parameter vy is allowed to vary, but the smoothness of
the curve is maintained by setting y = (&t — £,)/(t;+1 — 1,),
where t; = (1/k) Zjl;l Uiyj, | = 0,...,n, is the ith node of the
knot vector, and {ui}?;rok is the knot vector of the kth-order
NURBS curve. Obviously, ¢ is closest to the parameter of
point P;among the knots vectors. From the translation invar-
iance property of the NURBS curve

[P — Pl =d=|(1 — y)aVR;(@t) + yaVR;; (@)
which implies that

_ d
“T VI = PR@ + YRis @)

Then the new control points for the locally deformed curve
are computed from Eq. (2). For more details, see Piegl and
Tiller [5].

3

3.2. The ellipse-like offset curve

A curve deformation that is smoother than the local defor-
mation can be obtained by naturally deforming along a
given some direction. From the construction of the ellipse,
the ellipse can be considered to be a generalized offset from
a circle with a smooth deformation. So one type of general-
ized offset curve for the contour deformation can be given as
follows:

Definition 1. For a regular curve C(x) and a unit offset
direction V, the ellipse-like offset curve C.(u) with the offset
distance d is determined by

Ce(u) = C(u) + d(n(u)-V)V “
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Fig. 6. Sweep operator dialog box.

Fig. 7. Single-direction symmetric deformation rule.

where n(u) is the unit normal vector of the curve C(u). We
denote the ellipse-like offset as e-offset with the usual offset
as simply offset. Analogous to that of the usual offset, the
offset distance d to determine the outer and inner e-offset
can be positive and negative.

As shown in Figs. 5, 7 and 10, the e-offset curve is situ-
ated between the origin curve and the usual offset curve. To
simplify the expression for the e-offset curve, the parameter
u of C(u) is assumed to be the arc-length parameter, so the
following properties are straightforward.
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Fig. 8. Excursion deformation rule.

Property 1. For C(u) and C.(u), if T and V is not parallel
to each other, then T and T, have the following relation-
ship:

T.= (1 +dxT + (d-x)U

where T is the tangential vector of C(u) and U is obtained by
rotating vector V through a right angle clockwise along the
normal vector of plane w which includes C(u) if T is direc-
ted clockwise along the normal vector of m. Otherwise, U is
obtained by rotating vector V through a right angle
counterclockwise along the normal vector of .

Property 2. For C(u) and C.(u), the corresponding
tangential vectors T and T, have the following relationship:

T..V = (1 + d-x)T-V

Therefore, the projection of T. and T on V is pro rata.

Property 3. For a regular curve, if the normal vector at
one point on the curve is parallel to the offset direction V,
this point on the curve has the maximum offset distance. If
the normal vector of the curve is perpendicular to the offset
direction, then the offset distance at that point on the curve
is zero.

Property 4. For a circle with radius r, its ellipse-like
offset with the distance d is an ellipse, and the length of
the long axis is 2(d + r) if d > 0.

If the e-offset direction V is defined as the normal vector
n(u) of the curve, then the e-offset becomes the usual offset.
So the e-offset is the generalization of the usual offset.
Furthermore, the uniform expression of the data structures
and algorithms in the geometric modeling system can be
used to develop a NURBS approximation algorithm for e-
offset contours.

For the offset of a NURBS contour, one NURBS approx-
imation method is to offset the contour control points

Fig. 9. Local deformation rule.

Fig. 10. One-way deformation rule.

(Refs. [3,7], etc.). Here, the offset distance of each control
point will be computed to generate a NURBS e-offset
contour. Two NURBS approximation algorithms of the e-
offset curve will be presented:

First, the number of control points for the e-offset
NURBS contour depends on the e-offset distance and the
shape of the original curve. So the number of control points
differs for each e-offset intermediate contour in the sweep-
ing procedure. If the contour shape is changed sharply, the
number of new control points will increase rapidly, so the
compatibility of all e-offset intermediate contours needs to
be considered for skinning all intermediate contours to
construct the swept surface.

Another method is to fix the number of control points for
the e-offset step and only consider the key points on the
curve, so the offset approximation precision at some posi-
tions on the e-offset curve will be reduced some. But since
for the concept design in practice the deformed shape of the
swept surface does not need to presented precisely, but
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needs to be smooth, the second method is sufficient, then all
the e-offset intermediate contours do not need to be compa-
tible, and the design efficiency can be improved.

The second approximation can be defined by the follow-
ing algorithm. Letting the control points of the kth-order
NURBS contour C(«) be {P;}, i =0,...,n, then point Q; on
the curve most influenced by P; is near to C(¢;), where #; is
the ith node of the knot vector as discussed in Section 3.1.
The e-offset distance d; and the e-offset vector V; can be
computed from Section 2, and then the new control point P;
of the e-offset contour can be computed from the following
linear equations:

Cot) =D PiRjy(t)  i=0,...n 5)
j=0

where R; . (t;) is the rational basis of the kth-order NURBS
curve and C.(t;) is computed from Eq. (4). The coefficient
matrix of the above linear equations is invertible. A unique
solution exists and the new control points of the e-offset
contour can be computed. The weights and the knot vector
of the e-offset NURBS contour are invariable.

Remark. If the contour is a circle or a line, the e-offset
contour can be directly computed from the e-offset of the
control points. If the contour shape changes rapidly, some
knots of the NURBS curve can be inserted to increase the
number of contour control points in the preprocessing step
to reduce the approximation error. The error estimates for
the e-offset approximation and another approximation algo-
rithms are discussed by Wang [8].

4. Deformation rules for the swept surface

For flexible and convenient control of a surface shape by
the user, the surface modification region needs to intuitively
anticipate by the user. This section discusses the fourth issue
described in Section 2, that is, how to deform the contours
with profiles and the size of the contour region deformed by
the profiles. The different contours regions deformed by the
profiles are used to propose five types of deformation rules
for the swept surface.

1. Bi-directional symmetric deformation. This rule is simi-
lar to the offset operator for the 2D curve. The intermedi-
ate contour’s offset curve is considered to be the
deformed contour, and if more profiles occur, the first
input profile determines the offset distance described in
Section 2. Therefore, ONE profile is sufficient and other
profiles will be ignored. See Figs. 11-13.

2. Single-directional symmetric deformation. The contour
only moves along the deforming direction in either direc-
tion. For a smooth deformation, an e-offset operator is
used to deform the intermediate contour along the
deforming direction, and its deforming distance can be
computed as in Section 2 according to the profile shape

for the different intermediate contours. If the deforming
directions of different profiles are the same or the reverse
direction, only the deforming direction of the first of
these profiles will be considered and the others will be
ignored. Otherwise, the different deformations along the
deforming directions will be superposed on the inter-
mediate contours. See Figs. 17 and 21.

3. Excursion along a profile. In this rule, the entire inter-
mediate contour is translated along the deformation
direction with the deforming distance according to the
profile shape. In this rule, ONE profile is sufficient, and
the other profiles in the input profile list will be ignored.
See Fig. 8.

4. Local deformation. The intermediate contours will be
deformed locally at their deformation points along their
deformation directions. The locally deformed region on
the intermediate contours will be determined by the local
deformation method described in Section 3.1. That is, the
intermediate contour is deformed as a NURBS curve
local deformation. In this rule, all the local deformations
along their deforming directions by the profiles will be
superposed on the intermediate contour as shown in
Figs. 14-16.

5. One-way deformation. The deformed region is deter-
mined by the e-offset operator, but not total region of
the intermediate contour will be deformed. For any
point on the intermediate contour, if the angle between
the normal vector of the point and the deforming direc-
tion is larger than 90°, then the deformation at this point
on the intermediate contour will be canceled, so only one
side of the contour toward the deformed direction is
deformed and the shape of the other side of the contour
is unchanged. With this rule, all deformations along their
deforming directions by profiles will be superposed on
the intermediate contour. See Figs. 10 and 18.

Remark. A Sweep Operator dialog-box in GEMS 5.0 is
shown in Fig. 6. With these types of deformation rules,
the deformed region, the deformed distance and the
deformed type of the swept surface can be selected by
the user at will. The deformation on the swept surface
along the profiles can be reduced to the deformation of the
intermediate contours along the profiles. The contour defor-
mations are controlled along the spine by the profile, which
allows non-linear or linear curves. If the user demands a
linear deformation of the contour along the spine with a
linear profile, then scaling control is more convenient.
Therefore, an optional scaling factor is also input in the
dialog-box in GEMS 5.0 shown in gray in Fig. 6, which is
used in the example shown in Fig. 19.

5. Sweep algorithm with deformation

If twist is considered along the spine, each intermediate
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contour is rotated about the tangential vector of the spine
with twist angles equally divided according to the spine arc-
length ratio. For NURBS curves, the sweep algorithm with
deformation and twist can be described as follows:

Step 1. To maintain compatible between the spine and the
profiles, simultaneously subdivide the spine and the profiles
to obtain the split points on the spine and the profiles.

Step 2. Place the local moving frame at each split point
along the spine and set the intermediate contour on this
local moving frame. If more initial contours are input by
the user, then the contour shapes will change from one
initial contour to another initial contour along the spine.
The initial contours will be placed at some positions on
the spine by the user, or will be placed at equally arc-lengths
on the spine as the system default, then the intermediate
contours at each split point along the spine can be obtained
by linearly interpolating between two adjoint initial
contours, as shown in Figs. 12 and 13.

Step 3. Compute the deformed points on each intermediate
contour, the deforming points on the profiles, the deforming
distance and the deforming direction by the methods
described in Section 2. If twist is considered, equally divide
the twist angle according to the spine arc-length ratio for
each intermediate contour.

Step 4. According to the deformation rule selected by the
user, deform each intermediate contour along each profile.
If twist is considered, twist each intermediate contour along
the spine after performing the deformation procedure.
Step 5. The compatibility of all intermediate contours
should be maintained even if the number of control points
for the intermediate contour is not the same. Then skin all
the intermediate contours to generate the tensor product
NURBS swept surface.

Step 6. Error-estimates are made by selecting some isopara-
metric curves on the skinning surface along the spine to
estimate the interpolation-error bounds for some error-esti-
mate sample points on the curves from Eq. (1). If some of
the errors are larger than the prescribed error-bound, insert
one knot in the spine and return to Step 1; otherwise, error
for the Swept surface or solid is acceptable.

Remark. The interpolation-error can be also estimated as
developed by Wang [7,8].

6. Examples

The following examples were implemented in the
commercial CAD system GEMS 5.0, which was developed
by the National CAD Center of Tsinghua University. GEMS
5.0 is a feature-based geometric modeling system with
many advanced functions such as drawing with intelligent
PDA, solid and surface modeling, assembly, 2D engineering
drawing, FEA, sheet-metal and rendering. Many Chinese

Fig. 11. Bi-directional symmetric deformation rule.

Fig. 12. Cup formed by Bi-directional symmetric deformation rule.

mechanical engineering factories and companies use the
system.

Example 1. The contour is a circle, the spine is a line
segment, and the profile is a NURBS curve (Figs. 7-
11). The shape of the swept solid is deformed by the
profile (also called as the deforming curve shown in
Figs. 8 and 9).

Example 2. The contours are a circle and a rectangle
and the spine is a line segment. The profile is composed
of a NURBS curve and a line segment to form a cup
(Fig. 12).

Example 3. The contours are a circle and a pentagon
and the spine include a line segment, an arc segment
and a line segment, which are joined as G' continuity.
The profile is a NURBS curve. A tobacco pipe is
formed (Fig. 13).
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Fig. 13. Pipe formed by the bi-directional symmetric deformation rule.

r:

Fig. 14. Local deformation by two profiles.

Fig. 15. Twist added to Fig. 14.

Example 4. The contour, spine and profiles are all
NURBS curves with the local deformation rule (Fig. 14)
and a 90° twist (Fig. 15).

Example 5. The contour is a rectangle and the spine is a
fourth-order NURBS curve. One profile is a G° curve
composed of line segments and other profile is a fourth-
order NURBS curve with a twist angle of 45°. The local
deformation rule is used (Fig. 16). Notice that if the deform-
ing curve is G° continuity, the corresponding deformed
surface is also G° continuity.

Fig. 16. Local deformation by one C° profile and C' profile, with twist angle

of 45°.

Fig. 17. Fish-like solid formed by two profiles.

7o

Fig. 18. Twist angle of 360° with one-way deformation rule.

Example 6. The contour is a circle and the spine is a line
segment. The two profiles are fourth-order NURBS curves.
The single-directional symmetric deformation rule is used
to generate a fish-like solid (Fig. 17).

Example 7. The one-way deformation rule with a twist
angle of 360°. The spine and the profile are both NURBS
curves, and the contours are composed curves (Fig. 18).

Example 8. The contour is an ellipse and the spine is a
circle. The linear deformation rule is adopted, and the
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Fig. 19. Mobius-like solid with twist angle of 720°, and scaling of 0.5.

Fig. 20. Bottle generated with single-directional symmetric deformation
rule.

scaling is 0.5 with a twist angle of 720° to generate a
Mobius-like ring solid (Fig. 19).

Example 9. A bottle (Fig. 20) designed by a user with the
Sweep Operator in GEMS 5.0. The profile is a NURBS curve
and the contours are a circle and an ellipse with the single-
directional symmetric deformation rule.

Example 10. A spoon swept using two NURBS profiles
(Fig. 21).

7. Conclusion

Flexible and convenient control of the surface shape by
the user in a commercial geometric modeling system is
presented using a simple, intuitive deformation method in
which the shape control of the swept surface is reduced to

Fig. 21. Spoon swept via two profiles.

modifying the shapes of profiles or the spine. Two user
selectable functions, an intersection method and a parameter
method, are proposed to define the deforming points on the
profiles, the deformed points on each intermediate contour,
the deforming distance and the deforming direction, which
determine the deformed region and the deformed extent on
the swept surface. Furthermore, deformation rules are
presented to generate various types of shape deformations
on the surface, and an ellipse-like offset operator is
presented to deform the contours more smoothly and more
naturally. Finally, many examples have verified the effi-
ciency and the robustness of the method in the commercial
geometrical modeling system GEMS 5.0 developed by Tsin-
ghua University.
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