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1. Introduction

The interpolatory four-point subdivision scheme was introduced in 1986 by Dubuc [5], and gen-

eralized in 1987 by means of a real tension parameter ω by Dyn and Levin [6,7]. Starting from initial

data ck
0

∈ R, k ∈ Z, new values at level n + 1 ∈ N are generated by the recursion

c2kn+1 = ckn,

c2k+1
n+1

=
(
1

2
+ ω

) (
ckn + ck+1

n

)
− ω

(
ck−1
n + ck+2

n

)
.

Pairing the values ckn at level n with the dyadic abscissae xkn :=k/2n and connecting these points by

straight lines, we obtain a piecewise linear function cn:R → R with

cn

(
xkn

)
= ckn.
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Fig. 1. Two steps of the four-point scheme for ω = 0.16.
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Fig. 2. Examples of nodal functions and their derivatives generated by the four-point scheme for different values of ω.

The point-wise limit of this sequence of functions, if it exists, is denoted by

c := lim
n→∞ cn.

The limit function ϕ obtained for the initial data ck
0
:=δk,0 is compactly supported, and called the nodal

function of the scheme. It admits the representations

c =
∑
k∈Z

ck0ϕ(· − k)

so that, in general, c is as smooth as ϕ. Fig. 1 shows the first two recursion steps of the four-point

scheme for ck
0
:=δk,0 and ω = 0.16. In Fig. 2, nodal functions and their derivatives are displayed for

different values of ω.

The question arises how the smoothness ofϕ depends on the choice ofω. In particular, the problem

of determining the set

� :=
{
ω ∈ R : ϕ is C1

}
of C1-parameters has attracted some attention. Dubuc [5] proved ϕ to be C1 for his special choice

ω = 1/16. However, for general ω, the problem is in fact quite subtle. Below, we briefly recall a few

basic facts from subdivision analysis, and apply them to our special setting. Details can be found in

[3,4,9,10].

The differences

dkn :=2−n
(
ck+1
n − ckn

)
− 2−n

(
ckn − ck−1

n

)
, k ∈ Z
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of consecutive slopes of the functions cn satisfy the recurrence relation

d2kn+1 = (1 − 4ω)dkn − 2ω
(
dk−1
n + dk+1

n

)
,

d2k+1
n+1

= 4ω
(
dkn + dk+1

n

)

and the given subdivision scheme is C1 if and only if

lim
n→∞ sup

k∈Z

|dkn| = 0 (1)

for any choice of initial data. There exist two formally different, but actually equivalent, approaches

in assessing this condition. The first one [9] is based on considerations of the formal power series∑
k∈Z dknz

k , while the second one [10] relies on the following matrix formalism: With ω′ :=1 − 4ω, let

Aω
0 :=

⎡
⎢⎢⎣

4ω 4ω 0 0

−2ω ω′ −2ω 0

0 4ω 4ω 0

0 −2ω ω′ −2ω

⎤
⎥⎥⎦, Aω

1 :=

⎡
⎢⎢⎣

−2ω ω′ −2ω 0

0 4ω 4ω 0

0 −2ω ω′ −2ω
0 0 4ω 4ω

⎤
⎥⎥⎦. (2)

For each column-vector Dk
n :=

(
dkn, . . . , d

k+3
n

)
of four consecutive differences of slopes at level n there

exists an index vector I = (i1, . . . , in) ∈ {0, 1}n and a column-vector D�
0

=
(
d�
0
, . . . , d�+3

0

)
of initial dif-

ferences of slopes such that

Dk
n = Aω

in
· · ·Aω

i1
D�
0.

Thus, the values dkn are related to the set of all possible products of the matrices Aω
0
,Aω

1
. A well-known

criterion states that contractivity according to (1) is equivalent to find n ∈ N such that the row-sum

norm

‖Aω
in

· · ·Aω
i1

‖<1 (3)

for all index vectors I ∈ {0, 1}n of length n, see [10].

In [7], C1-limits were established for 0<ω<1/8 by considering all products of length n = 2, and

ruled out forω � 1/4 andω≤0. Later on, in [8], the verified range of C1-parameters was extended to

0<ω<
(√

5 − 1
)
/8 ≈ 0.154 using n = 3. Increasing the length of products provides sharper results,

and the brute-force-approach of Höfler [2] yielded the boundω<0.18653 by considering all products

of length n = 22. By computing the spectral radii of all products of length 2, Villemoes [11] proved that

parameters ω greater than or equal to

ω∗ := 1

12

(
27 + 3

√
105

)1/3 − 1

2

(
27 + 3

√
105

)−1/3 ≈ 0.19273

do not belong to the set � of C1-parameters, and he conjectured � = (0,ω∗). In this paper, we are

going to confirm this claim.

2. The joint spectral radius

Let A = {A0,A1},Ai ∈ Rd×d, d ∈ N, be a set of two real quadratic matrices. For a sequence of indices

I = (i1, i2, . . . , in) ∈ {0, 1}n with length |I| = n we define the product AI :=Ain · · ·Ai2
Ai1

. The asymptotic

behavior of AI as n → ∞ is closely related to the concept of the joint spectral radius. It is defined by

�(A) := lim sup
n→∞

sup
|I|=n

‖AI‖1/n,

where ‖ · ‖ denotes the row-sum norm. The matrix AI is called contractive, if ‖AI‖<1, and the set A is

called contractive, if �(A)<1.
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The set of all index vectors I :={I ∈ {0, 1}n : n ∈ N0} can be regarded as a directed binary tree

T :=(I,E) with knots I and edges

E := {
(I, J) ∈ I × I : J = (I, 0) or J = (I, 1)

}
.

Let us introduce some standard terminology from graph theory: The root of the tree T is the empty set,

and, by convention, the corresponding matrix product is the identity matrix Id :=A∅. The knot J is a

child of I if these knots are connected by an edge, i.e., (I, J) ∈ E. If J = (I, I′), then I is a prefix of J.Wewrite

I � J and I � J

to indicate that I is or is not a prefix of J, respectively. A subtree T ′ = (
I ′,E′) of T is a tree with knots

I ′ ⊂ I containing the root ∅, and edges E′ induced by E. A knot I ∈ I ′ is called a leaf of T ′ if it has no
children. The set of all leaves is denoted as L(T ′). A leaf I is called contractive, if the corresponding

product AI is contractive. A subtree is called finite, if the set of knots is finite, and it is called strong, if

every knot is either a leaf or has two children. The following lemma characterizes contractivity in terms

of trees. It appears already in [1,4] (and perhaps earlier), but we include a proof for the convenience

of the reader.

Lemma 2.1. The setA is contractive if and only if there exists a finite strong subtree T ′ of Twith contractive

leaves.

Proof. Suppose A is contractive, i.e., �(A)<1. Then there exists an n ∈ N, such that ‖AI‖<1 for

all I with |I| � n. Hence, all leaves of the subtree T ′ = (
I ′,E′) defined by I ′ := {

I ∈ I : |I| � n
}
are

contractive.

Conversely, let T ′ = (
I ′,E′) be a strong finite subtree of T with contractive leaves, i.e., m :=

max
{‖AI‖ : I ∈ L (T ′)

}
<1. Then the numbers � := max

{|I| : I ∈ I ′} and M := max
{‖AI‖ : |I|<�

}
are

finite. Consider a knot I ∈ I with length n :=|I| � �. Because the subtree is assumed to be strong, there

exists a leave J1 ∈ L(T ′) with J1 � I, i.e., I = (J1, I1). Repeating this argument for I1, and so on, we find

a partitioning I = (J1, J2, . . . , Jk , Ik), where the last vector Ik admits no further split, i.e., |Ik|<�, and the

remaining vectors J1, . . . , Jk are contractive leaves of T′. The number of these factors is at least k � n/�.
Corresponding to the partitioning of I, we find the factorization

AI = AIk
AJk

· · ·AJ1 ,

which yields the estimate ‖AI‖ � Mmk � Mmn/�. Hence,

‖AI‖1/n � M1/nm1/� <1

for n> − � lnM/ lnm, and therefore �(A)<1. �

In order to establish contractivity of A, the criterion (3) suggests to traverse the tree T with a

breadth-first search, level by level. By contrast, Lemma 2.1 shows that a depth-first search is equally

possible. Typically, the latter approach is muchmore efficient.

For example, when checking the matrices A of the four-point schemewith parameterω = 0.19 for

contractivity, breadth-first search requires to consider several billions of products, while depth-first

search manages with less than 300. Fig. 3 shows the left hand side of the depth-first search-tree. For

symmetry reasons, the righthandside is just amirroredversionof it. Thenumbers attached to theknots

are upper bounds of the norms of the corresponding matrix product. For example, ‖A(0,0,1,0)‖ � 1.01.
Contractive leaves are marked by black dots, while all other knots are marked by circles. For levels

n � 6, we observe a repeating pattern: At each level, there exist exactly four contractive and four non-

contractive knots, all characterized by an alternating prefix (0, 1, 0, 1, . . .) and a suffixwith length� 4.

When reaching level n = 38, the pattern is terminated by a row with only contractive leaves. Due to

space limitations, this part of the tree is not shown in the figure.

While cutting branches at contractive knots can reduce the number of products to be checked

considerable, the procedure still suffers from the fact that this number is hard to bound a priory. In

particular, it can be excessively large if �(A) is close to 1. Instead of investigating finite, but potentially

very large subtrees there are situations where it is more convenient to consider infinite subtrees with

a special structure.
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Fig. 3. Left hand side of strong subtree with contractive leaves for ω = 0.19.

Definition 2.2. Denote by

Jk :=(J, . . . , J), |Jk| = k|J|,
the k-fold repetition of the index vector J. For a finite set J = {J1, . . . , Jm} ⊂ I of generators Jμ and a

level � � maxJ∈J |J| we define the (J,�)-subtree T ′ = (I ′,E ′) as the subtree of T with knots

I ′ = {(Jk , I) ∈ I : J ∈ J, k ∈ N0, |I| � �}.

The condition � � maxJ∈J |J| ensures that T ′ is a strong subtree of T. The representation of I ′
chosen above is simple, but has the disadvantage that several elements are specified more than once.

For instance, we have (Jk+1, ∅) = (Jk , J). To reduce redundancy, we exclude vectors I with prefix J and

write

I ′ = {(Jk , I) ∈ I : J ∈ J, k ∈ N0, |I| � �, J � I}.

The leaves of T ′ satisfy

L(T ′) ⊂ {(Jk , I) ∈ I : J ∈ Js, k ∈ N0, |I| = �, J � I}. (4)

The following lemma provides necessary and sufficient conditions in terms of (J,�)-subtrees.

Lemma 2.3. Let J = {J1, . . . , Jm} be a set of generators and � ∈ N0. The set A is

• not contractive, if

�J := max
J∈J

�(AJ) � 1,

where �(AJ) denotes the standard spectral radius of AJ .
• contractive, if �J <1 and the (J,�)-subtree of T has contractive leaves.
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Proof. Suppose �(AJ) � 1 for some generator J ∈ J. Then

‖AJk‖ = ‖(AJ)
k‖ � �((AJ)

k) = �(AJ)
k � 1

for all k ∈ N. Hence, lim supn→∞ sup|I|=n ‖AI‖1/n � 1, and A is not contractive.

Conversely, suppose �J <1. Because limk→∞(AJ)
k = 0 for all J ∈ J, there exists k0 ∈ N such that

‖(AJ)
k0‖ = ‖A

Jk0
‖<1

for all J ∈ J. The leaves of the finite strong subtree

I ′ :={(Jk , I) : J ∈ J, k< k0, |I| � �, J � I} ∪ {Jk0 : J ∈ J}
are all contractive because they are either leaves of I ′ or belong to the second set on the right hand

side. Hence, by Lemma 2.1, A is contractive. �

At first sight, the sufficient condition of the lemma is not easier to verify than those given above,

but its relevance can be explained as follows:

We consider the generators J ∈ J in turn and try to establish contractivity of the related leaves (Jk , I)
separately. Let the eigenvaluesλj ofAJ be orderedbymodulus, i.e., |λ1| � · · · � |λd|. The spectral radius
�(AJ) = |λ1| determines the behavior of the powers of AJ , i.e., ‖Ak

J ‖ ∼ |λ1|k as k → ∞. If |λ1| � 1, then

contractivity is disproved. Otherwise, if |λ1|<1, we have two options: First, we observe that there

exists a constant k0 ∈ N with ‖A(Jk ,I)‖<1 for all k � k0 and I with |I| � �. Hence, number of leaves

with k< k0 that remain to be checked is finite. However, this procedure may be ineffective if |λ1| is
only slightly smaller than 1 since then k0 becomes very large. Second, we may proceed as follows:

Assuming, for simplicity, that the dominant eigenvalue λ1 is simple and positive, we define the

rescaled matrices

Ãi :=αJAi, αJ :=λ
−1/|J|
1

, i ∈ {0, 1} (5)

to obtain �(̃AJ) = 1. Since ÃJ has the simple eigenvalue 1, also the powers of ÃJ are converging. But

now, with uJ = uJÃJ and vJ = ÃJvJ denoting the left and right eigenvector of ÃJ to the eigenvalue 1,

respectively, the limit

Ã∞
J := lim

k→∞
Ãk
J = vJuJ

uJvJ

is different from 0. Here, the rate of convergence is determined by the second largest eigenvalue

λ̃2 :=λ2/λ1 of ÃJ , which may be much smaller than λ1,

‖Ãk
J − Ã∞

J ‖ ∼ |λ̃2|k.
Let ν ∈ N0 be chosen such that

r :=‖Ãν
J − Ã∞

J ‖<1 (6)

and define

R := max
k<ν

‖Ãk
J − Ã∞

J ‖. (7)

Then, for given k, we write k = pν + qwith q<ν , and obtain

‖Ãk
J − Ã∞

J ‖ = ‖(̃AJ − Ã∞
J )k‖ � ‖(̃AJ − Ã∞

J )ν‖p · ‖(̃AJ − Ã∞
J )q‖ � Rrp.

Let us define the constants

C1 := max{‖AIÃ
∞
J ‖ : |I| = �, J � I}, (8)

C2 := max{‖AI‖ : |I| = �, J � I}. (9)

According to (4), the leaves of the (J,�)-subtree T ′ have the form (Jk , I), where the index vector I has

length |I| = �, and satisfies J � I. Now,



J. Hechler et al. / Linear Algebra and its Applications 430 (2009) 3019–3029 3025

‖A( Jk ,I)‖ � ‖AIÃ
k
J ‖ � ‖AIÃ

∞
J ‖ + ‖AI (̃A

k
J − Ã∞

J )‖ � C1 + C2Rr
p.

If C1 <1, we can find p0 ∈ N such that C1 + C2Rr
p <1 for all p � p0. Hence, with k0 :=p0ν , we obtain

the estimate

‖A( Jk ,I)‖<1, |I| = �, k � k0.

Eventually, it remains to check

C3 := max{‖A( Jk ,I)‖ : k< k0, |I| = �, J � I}<1 (10)

to establish contractivity of all leaves in the branch of the subtree T generated by J. Let us briefly discuss

some aspects of this approach.

• The value of ν has to be sufficiently large to ensure (6), but otherwise, it can be chosen arbitrarily.

• Given ν , the constants r,R,C1,C2,C3 can be determined by computing finitelymanymatrix prod-

ucts. Further, in the application we have in mind, the total number of products to be considered

is bounded independently of the parameter ω, despite the fact that the size of the depth-first

search-tree is becoming arbitrarily large.

• If thematrices depend on a parameterω varying in some interval, one can sample the quantities

in question on a sufficiently dense subset to obtain a reliable indication of contractivity on the

whole interval. A rigorous verificationmight be tricky, but can be accomplished in special cases.

We will come back to this point in the context of the four-point scheme at the end of the paper.

• The concept of (J,�)-subtrees is kept as simple as possible for the sake of clarity. It is possible

to devise even smaller subtrees with similar properties at the cost of more involved definitions.

3. C1-Continuity

Now, we are going to verify our main result:

Theorem 3.1. The set � of C1-parameters of the four-point-scheme is � = (0,ω∗), where

ω∗ := 1

12
(27 + 3

√
105)1/3 − 1

2
(27 + 3

√
105)−1/3 ≈ 0.19273

is the unique real solution of the equation 32ω3 + 4ω − 1 = 0.

Proof. With Aω
0
,Aω

1
according to (2) and Aω :={Aω

0
,Aω

1
}, we have to show that

0<ω<ω∗ ⇔ �(Aω)<1.

From now on, we omit the superscript ω to simplify notation. Dyn et al. [7] show (0, 1/8] ⊂ � ⊂
(0, 1/4), and later on [8] (0, (

√
5 − 1)/8] ⊂ � ⊂ (0, 1/4). Villemoes [11] improves the upper bound to

� ⊂ (0,ω∗) by using the estimate �(A)2 � �(A(0,1)) = �(A(1,0)) = (ω∗)2.
To improve the lower bound, we consider all products AI with |I| = 4. The entries are quartic poly-

nomials in ω, which can be computed using a computer algebra system. Skipping the details, ‖AI‖<1

for all products at level 4 if

max{‖A(0,0,0,0)‖, ‖A(0,1,0,1)‖}<1.

For ω>1/8, this condition reads 8ω2 + 160ω3 − 64ω4 <1, what is satisfied if 0<ω � 0.17. On the

left hand side, Fig. 4 illustrates the result by showing all ‖AI‖, |I| = 4, as a function of ω. The thicker

lines correspond to I = (0, 0, 0, 0) and I = (0, 1, 0, 1), respectively. Hence, it remains to show that

ω∗ <ω<ω∗ ⇒ �(Aω)<1, ω∗ :=0.17.

With

A :=

⎡
⎢⎢⎣

0 0 4ω 4ω
0 −2ω 1 − 4ω −2ω
0 4ω 4ω 0

−2ω 1 − 4ω −2ω 0

⎤
⎥⎥⎦, P :=

⎡
⎢⎢⎣
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎤
⎥⎥⎦,
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Fig. 4. Norm of the products AI , |I| = 4, for ω ∈ [0, 0.2] (left) and eigenvalues of A for ω ∈ [0, 1/4] (right).

we obtain A0 = AP and A1 = PA. Because multiplication by P just amounts to a permutation of rows or

columns, the spectra of any (4 × 4)-matrix B and PBP coincide. In particular,

�(B) = �(PBP). (11)

This symmetry relation will help to simplify the subsequent arguments.

Now, we consider the (J, 6)-subtree T ′ given by the generators

J :={(0, 1), (1, 0)},
as suggested in Fig. 3. The level � = 6 is chosen slightly larger than the optimal value � = 4 to retain

an extra margin for our estimates. In what follows, we assume ω>0 without further notice. With

A(0,1) = PA2P and A(1,0) = A2,

we find, using (11), �J = �(A2) = �(A)2 for the constant defined in Lemma 2.3. The characteristic

polynomial of A is

p(λ) :=λ4 − 2λ3ω + (8ω2 − 2ω)λ2 − 8ω2λ − 32ω3, (12)

which has two real and a pair of complex roots. As illustrated by Fig. 4 (right), themoduli of the complex

roots and one of the real roots are <0.6 for ω<0.2, Hence, the spectral radius of A is determined by

the larger real root of p, and �(A) = 1 if and only if

p(1) = 1 − 4ω − 32ω3 = 0.

The unique real solution of this equation is ω∗, as given in the theorem, so that �(A)<1 if and only

if ω<ω∗. By the first part of Lemma 2.3, this shows that contractivity is impossible for ω � ω∗,
confirming the result of Villemoes.

Now we establish contractivity for ω ∈ (ω∗,ω∗), following the directions given in the sequel of

Lemma 2.3. We consider the generator

J = (0, 1)

for the remainder of the proof. For symmetry reasons, the results for the other one are completely the

same. The eigenvalues of AJ are squares of the eigenvalues of A, showing that the largest eigenvalue λ1

of AJ is real and simple. Hence, we may proceed with determining the constants r,R,C1,C2,C3 defined

in Eqs. (6)–(10). Of course, these constants depend on ω, but we are able to specify uniform upper

bounds, which are valid for all ω ∈ (ω∗,ω∗). In Fig. 5, the norms of all matrices in question are plotted

as functions of ω for ν = 2. The thick horizontal lines indicate the following uniform upper bounds:

r = ‖Ã2
J − Ã∞

J ‖<0.44,

R = max{‖Id − Ã∞
J ‖, ‖ÃJ − Ã∞

J ‖}<1.58,

C1 = max{‖AIÃ
∞
J ‖ : |I| = 6, J � I}<0.92,

C2 = max{‖AI‖ : |I| = 6, J � I}<1.5.
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Fig. 5. Bounds on the constants depending on ω ∈ (ω∗ ,ω∗).

Some comments concerning the machinery required for a rigorous verification of the given bounds

is postponed to the end of this section.

With k = 2p + q, q<2, the matrix products corresponding to leaves (Jk , I) of the subtree T ′ satisfy

‖A(Jk ,I)‖ � C1 + C2Rr
p � 0.92 + 1.5 · 1.58 · 0.44p � 0.99

for p � p0 :=5. Finally, we obtain the uniform bound

C3 = max{‖A(Jk ,I)‖ : k<10, |I| = 6, J � I} � 0.99

on the remaining 480 leaves with k<10. Due to the quite large number of products, Fig. 5 (bottom,

right) shows only the maximal norms for the exponents k = 0, 1, . . . , 9.
As mentioned above, the second generator J = (1, 0) yields exactly the same results so that A is

contractive by Lemma 2.3 for all ω ∈ (ω∗,ω∗). �

Of course, Fig. 5 must not be confused with a rigorous proof for the given bounds on the constants.

The plots were generated using a quite large number of ω-values, but still, there might be nasty

surprises lurking between the samples. Below, we describe the ideas behind some computer algebra

programs which we have implemented to actually verify the bounds.

The constantsC2 andC3 are treated as follows: The elements of the relatedmatrices are polynomials

in ω so that estimates of the form

4∑
i=1

|pi(ω)|<C2,3, ω ∈ (ω∗,ω∗)

have to be verified for always 4 polynomials pi forming the rows of these matrices. Equivalently, we

can show that
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4∑
i=1

sipi(ω) − C2,3 /= 0, ω ∈ (ω∗,ω∗) and

4∑
i=1

sipi(ω∗) − C2,3 <0

for all 16combinationsof signs si ∈ {−1, 1}. The left handsideof thefirst condition is a singlepolynomial

inω, and the absence of roots in the given interval can be established using Sturm sequences. To speed

up calculations, it is convenient to enlarge the interval slightly, say ω ∈ [17/100, 193/1000], to obtain

rational bounds. The verification of the second condition is straightforward.

For the other constants, the demanding part concerns the determination of the limit Ã∞
J . Rescaling

A by

Ã := αA, α := �(A)−1

yields Ãk
J = PÃ2kP for all k ∈ N0 and

Ã∞
J = PÃ∞P, Ã∞ := lim

k→∞
Ãk.

Instead of computing Ã∞
J directly, it is more convenient to determine Ã∞ and to use the above relation

because ÃJ is quadratic and Ã is only linear in ω.

With p as given in (12), the characteristic polynomial of Ã is p̃(λ) = α4p(λ/α). Hence, the equation

p̃(1) = −32α4ω3 − 8α3ω2 + α2(8ω2 − 2ω) − 2αω + 1 = 0

characterizes the scaling factor α as a function of ω. Unfortunately, the resulting explicit expression

is far to complicated to be useful for further processing. Alternatively, we substitute α :=β/(2ω) and
solve for ω to obtain the equivalent, but much simpler condition

ω = β2(4β2 + 2β + 1)

2(2β2 − β + 1)
. (13)

Using this equation, we now regardω = ω(β) as a function of the newparameterβ . It is easily verified

by inspection that the values of ω cover the interval (ω∗,ω∗) if β varies in the interval [0.367, 0.386].
Now, the scaling factor

α = β

2ω
= 2β2 − β + 1

β(4β2 + 2β + 1)

is a rational function of β , so that the elements of

Ã =

⎡
⎢⎢⎣

0 0 2β 2β
0 −β α − 2β −β
0 2β 2β 0

−β α − 2β −β 0

⎤
⎥⎥⎦

are rational inβ , too. The left eigenvectoru = uÃ and the right eigenvector v = Ãv of Ã to the eigenvalue

1 are given by

ut =

⎡
⎢⎢⎣

2β3

2β(2β2 + 1)
2β3 + αβ + β + 1

−2β2

⎤
⎥⎥⎦, v =

⎡
⎢⎢⎣

2β(2αβ + β − 1)
β(1 − 2β)

2β2

2αβ − 2β2 + β − 1

⎤
⎥⎥⎦

and define the limit matrix via

Ã∞ = vu

uv
.

The least common denominator

q1(β) :=β2(1 + 2β + 4β2)(2 + 5β + 12β2 − 8β3 + 16β4)

of this matrix is positive on (ω∗,ω∗). Let us consider, for example, the constant C1; similar consider-

ations apply to r and R. Using (13), the product AI , |I| = 6, is written in dependence of β . Again, the

least common denominator
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q2(β) :=(1 − β + 2β2)6

is positive. Now, we have to verify estimates of the form

4∑
i=1

|pi(ω)|
q1(ω)q2(ω)

<C1, ω ∈ (ω∗,ω∗).

Because q1q2 >0, it is equivalent to show

4∑
i=1

sipi(ω) − C1q1(ω)q2(ω) /= 0, ω ∈ (ω∗,ω∗)

and

4∑
i=1

sipi(ω∗) − C1q1(ω∗)q2(ω∗)<0

for all 16 combinations of signs si ∈ {−1, 1}. As above, these inequalities involve only polynomials

and can be proven using Sturm sequences. The total runtime for all 48 products using Maple 11 on a

standard PC is less than 2 min.

4. Conclusion

The determination of the set� = (0,ω∗) of C1-tension parameters for the four-point scheme solves

an open problem of long standing. The methods employed here cannot claim universal applicability,

but they might be useful in other cases as well. Future research in this direction will address the

analysis of other subdivision schemes, and the problem of determining sharp Hölder exponents of the

limit curves of the four-point scheme in dependence of ω.
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