
GEOMETRIC INTERPOLATION OF DATAIN R3Jernej KozakFaulty of Mathematis and Physis and IMFMJadranska 19, SI-1000 Ljubljana, Sloveniajernej.kozak�fmf.uni-lj.siEmil �ZagarFaulty of Mathematis and Physis and IMFMJadranska 19, SI-1000 Ljubljana, Sloveniaemil.zagar�fmf.uni-lj.siAbstrat In this paper, the problem of geometri interpolation of spae data isonsidered. Cubi polynomial parametri urve is supposed to interpo-late �ve points in three dimensional spae. It is a ase of a more generalproblem, i.e., the onjeture about the number of points in Rd whihan be interpolated by parametri polynomial urve of degree n. Theneessary and suÆient onditions are found whih assure the existeneand the uniqueness of the interpolating polynomial urve.Keywords: Parametri urve, geometri interpolation1. IntrodutionInterpolation by parametri polynomial urves is an important ap-proximation proedure in omputer graphis, omputer aided geometridesign, omputer aided modeling, mathematial modeling,. . . . The wordgeometri refers to the fat that the interpolating urve is not fored topass the points at given parameter values but is allowed to take its \mi-nimum norm shape". It is well known too, that this kind of interpolationan lead to interpolation shemes of high order auray. In [4℄, the au-thors onjetured that a parametri polynomial urve of degree n in Rdan, in general, interpolate n+ 1 + �n� 1d� 1�1



2data points. Some results by means of the asymptoti analysis anbe found in [2℄, [5℄ and [8℄, but there are only a few results on thisonjeture whih do not involve asymptoti analysis, e.g., [3℄, [6℄ and [7℄.In this paper the onjeture is proved to be true in the simplest nontrivialspae ase. More preisely, the ubi polynomial urve is found, whihinterpolates �ve points in R3 . It is lear that this an not be done ingeneral. The neessary and suÆient onditions on data points, whihensure the existene of the unique interpolating polynomial urve areprovided. These onditions are purely geometri and do not require anyasymptoti approah.The problem whih was desribed above, an be formalized as follows.Suppose �ve points TTTTTTTTT j 2 R3 , j = 0; 1; 2; 3; 4, are given. It is assumedthat TTTTTTTTT j 6= TTTTTTTTT j+1. Is there a unique regular ubi parametri polynomialurve BBBBBBBBB, whih satis�es the interpolating onditionsBBBBBBBBB(tj) = TTTTTTTTT j; j = 0; 1; 2; 3; 4; (1)where t0 < t1 < t2 < t3 < t4 are unknown parameter values? Clearly, t0and t4 an, e.g., be hosen as t0 := 0 and t4 := 1, sine one an alwaysapply a linear reparametrization. Thus the only unknown parametersleft are t1, t2 and t3 whih have to lie in a domainD := fttttttttt := (t1; t2; t3); 0 =: t0 < t1 < t2 < t3 < t4 := 1g: (2)Reall that BBBBBBBBB is a vetor polynomial in R3 , and its oeÆients are alsounknown. But one tj, j = 1; 2; 3, are determined, any lassial inter-polation sheme on arbitrary four points trivially produes oeÆientsof BBBBBBBBB. Thus the main problem is how to determine the parameters tj.Sine the interpolating polynomial urve is ubi, the problem is learlynonlinear and one an expet the system of nonlinear equations. One ofthe ways how to obtain it is desribed in the next setion.2. The system of nonlinear equationsA polynomial urve, whih satis�es (1), is ubi, and any divideddi�erene on �ve points maps it to zero, i.e.,[t0; t1; t2; t3; t4℄BBBBBBBBB = 000000000: (3)Sine tj are di�erent, the equations (3) an also be written as4Xj=0 1_!(tj)BBBBBBBBB(tj) = 000000000; (4)



Geometri Interpolation of Data in R3 3where !(t) := 4Yj=0(t� tj); _! := d!dt :By (1), the equation (4) rewrites to4Xj=0 1_!(tj)TTTTTTTTT j = 000000000; (5)i.e., the system of three nonlinear equations for t1, t2 and t3. Further-more, [t0; t1; t2; t3; t4℄TTTTTTTTT k = 4Xj=0 1_!(tj)TTTTTTTTT k = 000000000; (6)and one of the terms in (5) an be always aneled by subtrating (6) forany k. This leads to salar equations for the unknown tj. More preisely,if (6) is subtrated from (5) with k = 4, e.g., the equation3Xj=0 1_!(tj)(TTTTTTTTT j � TTTTTTTTT 4) = 000000000 (7)is obtained. Cross multipliation of (7) by (TTTTTTTTT 3�TTTTTTTTT 4) and salar produtby (TTTTTTTTT 2 � TTTTTTTTT 4) lead to1_!(t0)((TTTTTTTTT 0 � T4T4T4T4T4T4T4T4T4)� (TTTTTTTTT 3 � TTTTTTTTT 4)) � (TTTTTTTTT 2 � TTTTTTTTT 4)+ 1_!(t1) ((TTTTTTTTT 1 � T4T4T4T4T4T4T4T4T4)� (TTTTTTTTT 3 � TTTTTTTTT 4)) � (TTTTTTTTT 2 � TTTTTTTTT 4) = 000000000: (8)Sine (aaaaaaaaa � bbbbbbbbb) �  = det(aaaaaaaaa; bbbbbbbbb; ), a simple manipulation by determinantssimpli�es (8) to _!(t0)_!(t1) + 1 + det(�TTTTTTTTT 0;�TTTTTTTTT 2;�TTTTTTTTT 3)det(�TTTTTTTTT 1;�TTTTTTTTT 2;�TTTTTTTTT 3) = 000000000;where �TTTTTTTTT j := TTTTTTTTT j+1 � TTTTTTTTT j . Two other nonlinear salar equations an bederived in a similar way with di�erent k applied in (7) , and we �nallyget the system f1(t1; t2; t3;�1) := _!(t0)_!(t1) + 1 + �1 = 0;f2(t1; t2; t3;�2) := � _!(t4)_!(t0) + �2 = 0; (9)f1(t1; t2; t3;�3) := _!(t4)_!(t3) + 1 + �3 = 0;



4where �1 := det(�TTTTTTTTT 0;�TTTTTTTTT 2;�TTTTTTTTT 3)det(�TTTTTTTTT 1;�TTTTTTTTT 2;�TTTTTTTTT 3) ;�2 = det(�TTTTTTTTT 1;�TTTTTTTTT 2;�TTTTTTTTT 3)det(�TTTTTTTTT 0;�TTTTTTTTT 1;�TTTTTTTTT 2) ; (10)�3 = det(�TTTTTTTTT 0;�TTTTTTTTT 1;�TTTTTTTTT 3)det(�TTTTTTTTT 0;�TTTTTTTTT 1;�TTTTTTTTT 2) :The system (9) an be shortly written asFFFFFFFFF (ttttttttt;���������) := [f1(t1; t2; t3;�1); f2(t1; t2; t3;�2); f3(t1; t2; t3;�3)℄T = 000000000;where ��������� := [�1; �2; �3℄T . The main theorem of this paper is now thefollowing.Theorem 1 A ubi parametri urve through �ve points TTTTTTTTT j 2 R3 , j =0; 1; 2; 3; 4, is uniquely determined if and only if the omponents of ���������,de�ned by (10), are all positive.3. The proof of the theoremIn this setion the proof of the Theorem 1 will be given.If the system (9) has a unique solution in D de�ned by (2), then astraightforward omputation shows that_!(t0)_!(t1) < �1; _!(t4)_!(t0) > 0; and _!(t4)_!(t3) < �1:This implies that �i, i = 1; 2; 3, must be positive and the �rst part ofthe theorem is proved.The proof that the positivity of the omponents of ��������� is also suÆientondition, will be split into two main parts.a) A unique solution of the system for a partiular vetor ���������� will beestablished.b) The fat that a unique solution exists will be extended to all ad-missible vetors ��������� by the aim of the homotopy theory.a) Consider a partiular system (9) �rst, i.e.,FFFFFFFFF (ttttttttt;����������) = 000000000; ���������� := [3; 1; 3℄T : (11)Its polynomial equivalent on D readsp1(t1; t2; t3) := f1(t1; t2; t3; 3) _!(t1) = 0;p2(t1; t2; t3) := f2(t1; t2; t3; 1) _!(t0) = 0; (12)p3(t1; t2; t3) := f3(t1; t2; t3; 3) _!(t3) = 0:



Geometri Interpolation of Data in R3 5One of the possible approahes to suh polynomial systems is to useresultants as a tool that brings the system to a higher degree singlevariable ase. Let Res(p; q; x) denote the resultant of polynomials p,and q, with respet to the variable x. It is straightforward to omputeRes(Res(p1; p2; t2);Res(p2; p3; t2); t3) = 16 t101 (1� t1)10 q(t1);whereq(t1) := 1024 t61 � 3072 t51 + 5952 t41 � 6784 t31 + 4392 t21 � 1512 t1 + 189:Sine t1 6= 0; 1, the only andidates for the �rst omponent of the solutionttttttttt are the six roots of the polynomial q, i.e.,14 ; 34 ; 2� ip17� 3p214 :The seond equation in (12) is obviously linear in t2, and it is easy todedue that only the root t1 = 14 produes the (unique) solutionttttttttt = �14 ; 24 ; 34�T (13)of the system (11) in D.b) In order to extend the fat from a) to the general ���������, onsider thelinear homotopyHHHHHHHHH(ttttttttt; ���������;�) := (1� �)FFFFFFFFF (ttttttttt;����������) + �FFFFFFFFF (ttttttttt;���������) (14)A partiular form of the Brouwer's degree of a di�erentiable map GGGGGGGGGreads degree(GGGGGGGGG;D) = Xttttttttt2D;GGGGGGGGG(ttttttttt)=000000000 sign(det(J(GGGGGGGGG)(ttttttttt))); (15)where J is a Jaobian of GGGGGGGGG with respet to ttttttttt. It gives some informationabout the number of the zeros of GGGGGGGGG in D. In partiular, ifdegree(GGGGGGGGG;D) = �1;GGGGGGGGG has at least one zero in D. Even more ([1, p. 52℄), if (15) is appliedto HHHHHHHHH, the Brouwer's degree is invariant for all � 2 [0; 1℄, providedHHHHHHHHH(ttttttttt; ���������;�) 6= 000000000; ttttttttt 2 �D; � 2 [0; 1℄: (16)It is also important to note that if J(GGGGGGGGG) in (15) is globally nonsingular,then Brouwer's degree gives the exat number of zeros of GGGGGGGGG in D. In ourase the JaobianJ(HHHHHHHHH)(ttttttttt) := �HHHHHHHHH(ttttttttt; ���������;�)�ttttttttt = �FFFFFFFFF (ttttttttt; ����������)�ttttttttt



6really is globally nonsingular on D, sine its determinant at any pointttttttttt 2 D simpli�es to6 (t0 � t4)3 (t4 � t1) (t4 � t2) (t4 � t3)(t1 � t0) (t2 � t0) (t3 � t0) (t2 � t1)2 (t3 � t1)2 (t3 � t2)2 < 0:Sine for � = 0 the homotopy (14) beomes our partiular system (11)for whih a unique solution has been established, anddegree(HHHHHHHHH(�; ����������; �);D) = �1;the Brouwer's degree of HHHHHHHHH will be �1 for all � 2 [0; 1℄, if (16) holds.Unfortunately, HHHHHHHHH is not di�erentiable on �D. Even more, it is notontinuous and unbounded on some points of the boundary. Thus thefollowing lemma is needed.Lemma 1.1 There is a ompat set eD � D whih ontains partiularsolution (13) and HHHHHHHHH(ttttttttt; ���������;�) 6= 000000000 for ttttttttt 2 � eD, � 2 [0; 1℄ and ��������� withpositive omponents.Proof: Let us prove �rst that HHHHHHHHH(ttttttttt; ���������;�) an not have any solutionarbitrary lose to �D. Note thatt0 = t1; t3 < t4; or t0 < t1; t3 = t4implies HHHHHHHHH2(ttttttttt; ���������;�) 6= 0, thus HHHHHHHHH2 is either unbounded orHHHHHHHHH2(ttttttttt; ���������;�) = (1� �)����������2 + ����������2 > 0;sine the omponents of ���������� and ��������� are positive. Thus only the relationst0 = t1 � t2 � t3 = t4 or t0 < t1 � t2 � t3 < t4are left to examine. Sine t0 = 0 < 1 = t4, there are only two possibilitiesin the �rst ase, t0 = t1 < t2 and t2 < t3 = t4. This implies obviousontraditions HHHHHHHHH1(ttttttttt; ���������;�) = (1� �)����������1 + ����������1 > 0;and HHHHHHHHH3(ttttttttt; ���������;�) = (1� �)����������3 + ����������3 > 0:In the seond ase one has t0 < t1 = t2 < t3 < t4, t0 < t1 < t2 = t3 < t4or t0 < t1 = t2 = t3 < t4. But now HHHHHHHHH1 or HHHHHHHHH3 is unbounded. So allthe zeros of HHHHHHHHH are stritly in D. But D is an open set, thus there isa ompat set eD � D with a smooth boundary whih ontains all thezeros of HHHHHHHHH in its interior.The proof of the last lemma also ompletes the proof of the Theorem1.



Geometri Interpolation of Data in R3 74. Numerial exampleThe results from the previous setions will be illustrated by a numeri-al example here. Let us suppose that the interpolating points are takenfrom the helix fffffffff(�) = [os 3�; sin 3�; 3 �℄T :Let TTTTTTTTT j = f(�j), where �j = j=4, j = 0; 1; 2; 3; 4. It is a matter ofstraightforward omputation to verify that �i, i = 1; 2; 3, de�ned by(10), are positive and the onditions of the Theorem 1 are met. Thesolution of the nonlinear system (9) an be obtained by applying, e.g.,Newton's method or any of the ontinuation methods. This gives thesolution ttttttttt = [0:2313; 0:5000; 0:7687℄T :Now one an use any lassial interpolation sheme on arbitrary fourinterpolation points TTTTTTTTT j , whih gives the interpolating polynomial urveBBBBBBBBB(t) = 24 3:041 t3 � 4:823 t2 � 0:207 t + 1�0:216 t3 � 3:384 t2 + 3:741 t1:172 t3 � 1:759 t2 + 3:586 t 35 :

Figure 1. The interpolated data points and parametri polynomial urve.
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