
ON GEOMETRIC INTERPOLATION BY POLYNOMIAL CURVESJERNEJ KOZAK� AND EMIL �ZAGARyAbstrat. In this paper, geometri interpolation by parametri polynomial urves is onsidered.Disussion is foused on the ase where the number of interpolated points is equal to d + 2, and ddenotes the degree of the interpolating polynomial urve. The interpolation takes plae in Rd.Even though the problem is nonlinear, simple neessary and suÆient onditions for existene of thesolution are stated. These onditions are entirely geometri, and do not depend on the asymptotianalysis. Furthermore, they provide an eÆient and stable way to the numeri solution of theproblem.Key words. polynomial urve, geometri interpolation, existene, uniqueness, approximationorderAMS subjet lassi�ations. 65D05, 65D071. Introdution. Let a sequene of data pointsTTTTTTTTT 0; TTTTTTTTT 1; : : : ; TTTTTTTTT r+1 2 Rd ; TTTTTTTTT i 6= TTTTTTTTT i+1;be given. A parametri urve interpolates these points in the geometri sense ifthe parameter values at whih it passes through the points TTTTTTTTT i are not presribed inadvane. In the limiting ase of the geometri interpolation if two onseutive pointsoinide, this sheme leads to the interpolation of a point, and a tangent diretionat the same parameter value. Further, threefold interpolation at a point requiresalso the urvature to be known there, et. The threefold interpolation by ubis inthe plane an be traed bak to [3℄, the paper that initiated the study of geometriinterpolation. In order to make the proofs of the results simple, only distint pointsTTTTTTTTT i will be onsidered in this paper. The extension to the osulatory ase will appearelsewhere.The disadvantage of the geometri approah is obvious. Namely, the problem of�nding the interpolatory urve is nonlinear, so the questions of existene, uniqueness,and omputation of the solution arise.However, there are important advantages too. Free parameter values at whihthe points TTTTTTTTT i are interpolated may raise the approximation order. This fat has beenobserved in [3℄, and in many of the subsequent papers. As a bound for the polynomialgeometri interpolation, it has been onjetured in [5℄ that a parametri polynomialurve of degree n in d dimensional Eulidean spae an, in general, interpolater + 2 = n+ 1 + �n� 1d� 1�points in Rd , and reah the same approximation order. The onjeture has beenproved only for a few partiular ases. But perhaps the most important bonus ofall is that the geometri approah provides the basis for the Gm ontinuous splineshemes where the interpolants do not depend on the loal parametrisation. This isan important and often-required property in the CAGD appliations.� Department of Mathematis and IMFM, University of Ljubljana, Jadranska 19, SI-1000 Ljub-ljana, Slovenia (Jernej.Kozak�Fmf.Uni-Lj.Si).y Department of Mathematis and IMFM, University of Ljubljana, Jadranska 19, SI-1000 Ljub-ljana, Slovenia (Emil.Zagar�Fmf.Uni-Lj.Si). 1



2 JERNEJ KOZAK AND EMIL �ZAGARSuppose now that the interpolatory urve is a parametri polynomial urveBBBBBBBBBn : [a; b℄! Rdof degree n. Sine linear reparametrisation does not hange the degree of the polyno-mial, the assumption a := 0 and b := 1 an be made. Thus the onstrution of BBBBBBBBBnrequires to determine ti,t0 := 0 < t1 < t2 < : : : < tr < tr+1 := 1;(1.1)suh that BBBBBBBBBn(ti) = TTTTTTTTT i; i = 0; 1; : : : ; r + 1:(1.2)This is the nonlinear part of the problem. One ti are known, it is straightforwardto obtain the urve BBBBBBBBBn in any of the well-known forms suh as B�ezier, Newton orLagrange.In order to keep the number of free parameters equal to the number of the un-knowns, a ertain Diophantine equation has to be satis�ed ([4℄). The asen = r = d(1.3)turns out to be the simplest to handle ([6℄). Nevertheless, few results an be found inthe literature without the assumption that the data points are suÆiently dense andtaken from some smooth underlying urve. In the plane ase (d = 2), some resultsare inluded in [10, 8, 9℄, and in the spae ase (d = 3) in [4℄.As it will be shown below, the ase n = r = d an be worked out without anyasymptoti assumptions. Perhaps the methods applied here ould be used to studymore ompliated problems too, suh as those outlined in [11℄, and even the splinease ([12℄).Let us assume (1.3) throughout the paper, and simplify the notation of BBBBBBBBBn toBBBBBBBBB := BBBBBBBBBn = BBBBBBBBBd:The equations that determine the unknowns ti in this partiular ase will be workedout in the next setion.The key role in the paper is played by the matrix of data di�erenes�T := ��TTTTTTTTT i�di=0; �TTTTTTTTT i := TTTTTTTTT i+1 � TTTTTTTTT i;(1.4)and by the signs of its minors Di := det��TTTTTTTTT j�dj=0j 6=i(1.5)i.e., the signs of the volumes of the d-simplexes, spanned by the vetors�TTTTTTTTT 0;�TTTTTTTTT 1; : : : ;�TTTTTTTTT i�1;�TTTTTTTTT i+1; : : : ;�TTTTTTTTT d:If the vetors �TTTTTTTTT i do not belong to a proper subspae of Rd , and are not lying ona polynomial urve of degree < d, the matrix �T is of full rank, and the followingonlusion an be made.



ON GEOMETRIC INTERPOLATION BY POLYNOMIAL CURVES 3Theorem 1.1. Suppose rank �T = d. Then the interpolating urve BBBBBBBBB exists ifand only if the minors Di are all of the same sign. If BBBBBBBBB exists it is regular, and theparameter values ttttttttt := (ti)di=1 are determined uniquely.In the plane ase, the signs of the Di an be identi�ed by ertain angles, as hasbeen already observed in [10, 8℄. More generally, if the data are onvex in the disretesense, one has sign (D0) = sign (Dd) :The additional requirements of Theorem 1.1 simply guarantee that the data stayonvex under the translationsTTTTTTTTT j ! TTTTTTTTT j ��TTTTTTTTT i; j = i+ 1; i+ 2; : : : ; d; i = 1; 2; : : : ; d� 1;i.e., they are not too twisted.Let S� : Rd+1 ! f0; 1; : : : ; dg denote the number of strong sign hanges in xxxxxxxxx 2Rd+1 . Then Theorem 1.1 atually requires that the kernel of �T is spanned byxxxxxxxxx = �(�1)iDi�di=0 ;with S�(xxxxxxxxx) = d:This observation an be extended to the ase of de�ient rank �T < d, but then theuniqueness or the regularity of a solution an not be expeted. Still the following fatan be established.Theorem 1.2. Let rank �T < d. An interpolating urve BBBBBBBBB of degree � d an befound if and only if there exists xxxxxxxxx 2 ker �T suh that S�(xxxxxxxxx) = d.In the setup of Theorem 1.2, all regular BBBBBBBBB will return the same interpolatoryurve, onsidered as a set of points. But the speed of moving along the urve willbe di�erent. The additional free parameters should be used to derease the degree ofthe interpolating urve if possible. If the obtained lower-degree urve is unique, theproof of Theorem 1.1 an be repeated and the onlusion that it is regular an alsobe made. Redution of the degree is not always possible. As an example take a ubiurve that interpolates �ve points in R3 . If the data are lying on a plane, a ubi isstill needed as a quadrati urve an interpolate four planar points in general.Although the problem of determining the unknowns ti is nonlinear, there is aneÆient and stable way to the numerial solution, given as the following result.Theorem 1.3. Suppose that the requirements of Theorem 1.1 are satis�ed. Theontinuation method [1℄ will always ompute the numerial solution.Pratial evidene shows that the best way is to start the ontinuation methodas one-step method. This step has to be redued only if the solution lies near theboundary of (1.1).2. The equations. Under the assumption (1.3) the system (1.2) an be rewrit-ten as BBBBBBBBB(ti) = TTTTTTTTT i; i = 0; 1; : : : ; d+ 1;where the unknowns are (vetor) oeÆients of the polynomial urve BBBBBBBBB, and salars(ti)di=1 that have to satisfy (1.1). But the divided di�erene on arbitrary d+2 pointsmaps a polynomial of degree � d to zero, so[t0; t1; : : : ; td+1℄BBBBBBBBB = 000000000;



4 JERNEJ KOZAK AND EMIL �ZAGARand [t0; t1; : : : ; td+1℄ should map the data TTTTTTTTT i to zero too. Sine ti are required to bedi�erent, this fat an be written asd+1Xi=0 1_!(ti)TTTTTTTTT i = 000000000; !(t) := d+1Yi=0(t� ti);(2.1)i.e., d salar equations for d salar unknowns t1; t2; : : : ; td. The equations (2.1) arethe only nonlinear part on the way to the interpolatory urve BBBBBBBBB, and one an eÆ-iently solve them by the ontinuation method as stated in Theorem 1.3. The �nalonstrution of BBBBBBBBB then follows the funtion ase and is straightforward.3. The proofs. The assertions in the introdution seem quite simple, but theproofs will take several steps. Here is a brief outline:1. The system (2.1) will be transformed in a form more suitable for the analysisof the existene and the uniqueness.2. It will be shown that the existene of a unique solution of the system (2.1)implies that Di should all be of the same sign (with Lemma 3.1 as a part ofthe proof).3. Lemma 3.2 will establish the fat that any solution of (2.1) that satis�es (1.1)should be simple, and Lemma 3.3 will assure that any suh solution ould notbe arbitrarily lose to the boundary.4. A proof that the system (2.1) has a unique solution for partiular data willbe outlined.5. The onvex homotopy will help to arry over the onlusions from the par-tiular to the general ase in order to omplete the proof of Theorem 1.1.6. The proofs of Theorems 1.2 and 1.3 will omplete the setion.As to the �rst step, let us reall that [t0; t1; : : : ; td+1℄1 = 0. So the system (2.1)an be rewritten asd+1Xi=0 1_!(ti) (TTTTTTTTT i � TTTTTTTTT 0) = d+1Xi=1 1_!(ti) (TTTTTTTTT i � TTTTTTTTT 0) = 000000000;(3.1)or (TTTTTTTTT i � TTTTTTTTT 0)d+1i=1 !!!!!!!!!;(3.2)where !!!!!!!!! := � 1_!(ti)�d+1i=1 :(3.3)By inserting I = U�1U between the two fators in (3.2), whereU := 0BBB� 1 1 : : : 10 1 : : : 1... ... . . . ...0 0 : : : 1 1CCCA 2 Rd+1;d+1 ; U�1 = 0BBB� 1 �1 : : : 00 1 : : : 0... ... . . . ...0 0 : : : 1 1CCCA ;the equations (3.1) beome �T !!!!!!!!!� = 000000000;(3.4)



ON GEOMETRIC INTERPOLATION BY POLYNOMIAL CURVES 5with �T = (TTTTTTTTT i � TTTTTTTTT 0)d+1i=1 U�1 2 Rd;d+1de�ned by (1.4), and !!!!!!!!!� := U!!!!!!!!! = 0�d+1Xj=i 1_!(tj)1Ad+1i=1 :(3.5)If at least one of the determinants Di de�ned in (1.5) is di�erent from zero, then �Tis of full rank d, and the kernel of �T is spanned by the vetor�(�1)d+1�iDi�di=0 :Sine !!!!!!!!!� should be proportional to it, the nonlinear system (3.4) beomes� d+1Xj=i 1_!(tj) = (�1)d+1�iDi�1; i = 1; 2; : : : ; d+ 1;(3.6)i.e., d+ 1 salar equations for d+ 1 unknowns �; t1; t2; : : : ; td.The form of the system (3.6) is suitable to proeed with the seond step of theproofs. Let t0 := 0 < t1 < � � � < td < td+1 := 1, and � 6= 0 be a unique solution of thesystem (3.6). Then Dd = � 1_!(td+1) 6= 0;and sign (Dd) = sign (�). Thussign (Di�1) = sign (�) ; i = 1; 2; : : : ; d;if and only if S�(!!!!!!!!!�) = d. This fat will be established with the help of the followinglemma.Lemma 3.1. Let pi, 1 � i � d, be the interpolating polynomial of degree � d+ 1that interpolates the datapi(tj) = � 0; j = 0; 1; : : : ; i� 1;1; j = i; i+ 1; : : : ; d+ 1at d+ 2 distint points t0 < t1 < � � � < td+1. Then pi is of degree d+ 1, and the signof its leading oeÆient is equal to (�1)d+1�i.Proof. The interpolating onditions imply pi 6= onst, thus p0i 6= 0. By Rolle'stheorem, p0i has at least i�1 zeros on (t0; ti�1) and at least d� i+1 zeros on (ti; td+1),i.e., at least d zeros on (t0; td+1). Sine p0i does not vanish identially, the degree of p0iis d, and the degree of pi is d + 1. Note that p0i must be inreasing on (ti�1; ti), andsign (p0i(ti)) = 1. But then sign (p0i(td+1)) = (�1)d+1�i. Sine the leading oeÆientof pi has to be of the same sign as p0i(td+1), the lemma has been proved.Let pi be the polynomial studied in Lemma 3.1. Its leading oeÆient is equal tothe divided di�erene[t0; t1; : : : ; td+1℄pi = d+1Xj=0 pi(tj)_!(tj) = d+1Xj=i 1_!(tj) ;



6 JERNEJ KOZAK AND EMIL �ZAGARand the fat sign0�d+1Xj=i 1_!(tj)1A = (�1)d+1�iis on�rmed by the onlusion of Lemma 3.1. The �rst part of the proof of Theorem1.1 is omplete.Let us ontinue with the step three of the proofs. If two onseutive equations in(3.6) are subtrated, the system reads�_!(ti) = (�1)d+1�i(Di�1 +Di); i = 1; 2; : : : ; d+ 1; Dd+1 := 0:(3.7)A solution of the system (3.7) will be simple if the Jaobian J at that point is non-singular. A straightforward omputation gives J asJ := J(ttttttttt; �) = diag� 1_!(ti)�d+1i=1 A;(3.8)with A := (aij)d+1i;j=1, andaij = 8>>>>><>>>>>: �ti � tj ; i 6= j; j < d+ 1;d+1Xk=0k 6=i �tk � ti ; i = j; j < d+ 1;1; j = d+ 1:The suggestions in [7℄ will help us to prove the following lemma.Lemma 3.2. The determinant of the matrix A is given asdetA = d!�d (t0 � td+1) 1_!(t0) :Proof. By de�nition, detA is a sum of terms of the formonstYi 6=j 1ti � tj ;(3.9)where the total degree of the denominator, viewed as a polynomial in the variablest`; ` = 0; 1; : : : ; d+ 1;is d, but for some terms onst ould be zero. The terms involving1ti � tj or 1(ti � tj)2 ; i; j = 1; 2; : : : ; d+ 1; i 6= j;(3.10)ould not take part in (3.9). To see this, observe that for �xed i 6= j, 0 � i; j � d,only the elements� aii aijaji ajj � = �0B� 1tj � ti 1ti � tj1tj � ti 1ti � tj 1CA+ other terms



ON GEOMETRIC INTERPOLATION BY POLYNOMIAL CURVES 7in the matrix A are involved. So the ontribution of (3.10) to detA is omputed as thedeterminant of the matrix A where all the other elements in the rows i and j and inolumns i and j are set to zero. But then all the 2� 2 minors obtained from the rowsi and j vanish identially, and the Laplae expansion shows that this determinant isequal to zero. A similar argument works for i = d+ 1; j = 0, too. But then only thed possible divisors t0 � ti; i = 1; 2; : : : ; d, are left, and detA has to be of the formdetA = �d dQi=1(t0 � ti) = �d(t0 � td+1) _!(t0) ;where  is a onstant independent of ti. Sine = 1�d (t0 � td+1) det �diag(t0 � ti)d+1i=1 A�;the sequene of limits t1 ! t0; t2 ! t0; : : : ; td ! t0 simpli�es  to = 1t0 � td+1 det0BBBBB� 1 0 � � � 0 01 2 � � � 0 0... ... . . . ... ...1 1 � � � d 0�1 �1 � � � �1 t0 � td+1
1CCCCCA = d!;and the lemma is proved.Lemma 3.3. Let Di 6= 0 be all of the same sign. Then a onstant  > 0, dependingon the data Di only an be found, suh that for any solution of (3.7) that satis�es(1.1), the relations ti+1 � ti �  > 0; i = 0; 1; : : : ; d;must hold.Proof. Without loss of generality, one an assume that sign (�) = sign (Di) > 0.If � � �0 > 0 for some onstant �0, learly ti+1 � ti � onst > 0, sine otherwise theleft hand side of (3.7) would be unbounded. Thus ti an approah eah other onlyif � ! 0. The last equation in (3.7) then implies _!(td+1) ! 0, and onsequentlytd ! td+1 = 1. Sine [t0; t1; : : : ; td+1℄1 = 0, summing all equations in (3.7) yields�_!(t0) = (�1)d+1D0;whih implies _!(t0) ! 0 too, and further t1 ! t0 = 0. Thus at least two ti stayseparated by a onstant. Suppose that `; 1 � ` � d, is the smallest index suh thatt`; t`+1 are separated, i.e., t` ! t0, but t`+1 � t` � onst > 0. Then1ti � tj = 1t0 � tj (1 +O(ti � t0)); i � ` < j;and 1_!(ti) = 1Q̀j=0j 6=i (ti � tj) 1d+1Qj=`+1(t0 � tj) (1 + X̀i=0 O(ti � t0)); i � `:(3.11)



8 JERNEJ KOZAK AND EMIL �ZAGARLet w := d+1Yj=`+1(tj � t0) � (t`+1 � t`)d+1�` � onstd+1�` > 0:By inserting (3.11) into (3.7), multiplied by w, one omputes�Q̀j=0j 6=i (ti � tj) = (�1)`�iw(Di�1 +Di) + higher� order terms; i = 0; 1; : : : ; `;and the summing of these equations yieldsX̀i=0 �Q̀j=0j 6=i (ti � tj) = [t0; t1; : : : ; t`℄� = wD` + higher� order terms;(3.12)a ontradition, sine [t0; t1; : : : ; t`℄� = 0 for ` � 1, and D` 6= 0 for 1 � ` � d.The fourth step of the proofs onsiders a partiular set of data points, taken onthe polynomial urve fffffffff(t) := (tk)dk=1 asT �i := fffffffff(�i); i = 0; 1; : : : ; d+ 1;where �0 := 0 < �1 < � � � < �d < �d+1 := 1:(3.13)Note that the orresponding determinantsD�i := det (�T �i )dj=0j 6=i(3.14)ould be omputed asD�i = d! Z �1�0 dx1 Z �2�1 dx2 : : : Z �i�i�1 dxi Z �i+2�i+1 dxi+1 : : : Z �d+1�d V (x1; x2; : : : ; xd)dxd;where V (x1; x2; : : : ; xd) =Yj>i(xj � xi)is the Vandermonde determinant. This implies D�i > 0 , and rank �T � = d, sine �iare ordered by (3.13). The neessary onditions of Theorem 1.1 are met, and one ofthe solutions of (2.1) for the partiular data is obviouslyti = �i; i = 1; : : : ; d:In order to omplete the proof of Theorem 1.1 for these data, it must be shown thatthis is the only solution. The system in its basi form (2.1) isd+1Xi=0 �ì_!(ti) = 0; ` = 1; 2; : : : ; d;(3.15)



ON GEOMETRIC INTERPOLATION BY POLYNOMIAL CURVES 9and the identity [t0; t1; : : : ; td+1℄1 = 0 an always be added. But then (3.15) is reduedto the fat that the vetor � 1_!(ti)�d+1i=0(3.16)should span the kernel of the matrix��ij�d;d+1i=0;j=0 :A straightforward omputation shows that (3.16) should be proportional to the vetorof the same struture, but with all ti being replaed by �i. So ti and �i are equivalent,and one an simplify further disussion by exhanging the role of the unknowns andthe parameters. Thus suppose ti to be known, and �i to be determined.The equations (3.15) imply that the values �i must be equal to the values p(ti)of some polynomial p of degree � d, and[t0; t1; : : : ; td+1℄p` = 0; ` = 1; 2; : : : ; d:(3.17)It is easy to see that (3.17) does not, in general, determine the polynomial p uniquely,even for small d. Take d = 3, and equidistant partition ti = i4 . Then the divideddi�erene [t0; t1; t2; t3; t4℄ obviously maps to zero the powers t`; ` = 1; 2; 3, but alsop`, where p(t) := 13 t(16� 45t+ 32t2):However, this p does not produe �i = p(ti) in the order as required in (3.13) sine itis not monotone on [0; 1℄.Let us proeed to show that for a partiular hoie of ti the solution of (3.17) thatsatis�es (3.13) is unique. Let 0 < h� 1, andti = idh; i = 1; 2; : : : ; d:Note p(0) = 0; p(1) = 1. Thus p an be expressed as followsp(t) = dXi=1 iti; d := 1� d�1Xi=1 i;and the �rst equation of (3.17) is satis�ed automatially. Let us reall that the divideddi�erene an also be written asI�
 f(z)!(z)dz = d+1Xi=0 Res�f! ; ti� = [t0; t1; : : : ; td+1℄f; ti 2 I;if f is analytial on the set 
 � C ; I � 
. Here, Res(g; z) denotes the residuum of gat z. Thus (3.17) an be written asd+1Xi=0 Res�p!̀ ; ti� = 0; ` = 2; 3; : : : ; d:(3.18)



10 JERNEJ KOZAK AND EMIL �ZAGARThe fration p!̀ has only isolated singularities in C � , therefored+1Xi=0 Res�p!̀ ; ti�+Res�p!̀ ;1� = 0; ` = 2; 3; : : : ; d;and the system (3.18) is simpli�ed toRes�p!̀ ;1� = 0; ` = 2; 3; : : : ; d:(3.19)The rational funtion 1! expands at 1 as1!(z) = 1zd+2 + 1Xi=d+3 1zi �d+ 12 h+O(h2)� :Also, p`(z) = ` dXk=` zk Xi1+i2+:::+i`=k i1i2 : : : i` :(3.20)In (3.20), only the terms with k � d+1 will ontribute to the residue. Sine d+1 > `,the system (3.19) reads` dXk=d+1 Xi1+i2+:::+i`=k i1i2 : : : i` +O(h) = 0; ` = 2; 3; : : : ; d:(3.21)But p`(1) = 1, and (3.20) simpli�es (3.21) to1� dXk=l Xi1+i2+:::+i`=k i1i2 : : : i` +O(h) = 0; ` = d; d� 1; : : : ; 2:(3.22)First let us onsider (3.22) when h! 0. Then the �rst two equations read1� d1 = 0;(3.23)and 1� d�11 � dd�21 2 = 0;(3.24)and the rest as1� 1̀ � ``�11 d�`+1 + g`(1; 2; : : : ; d�`) = 0; ` = d� 2; d� 3; : : : ; 2:(3.25)Equation (3.23) implies that 1 = 1 is the only real solution. This is true also foreven d, beause 1 = �1 implies that p is not monotone. But then (3.24) implies2 = 0, and (3.25) i = 0; i = 3; 4; : : : ; d � 1. A brief look at (3.22) reveals thatg`(1; 2; : : : ; d�`) involves produts that inlude at least two i, with 2 � i � d � `.



ON GEOMETRIC INTERPOLATION BY POLYNOMIAL CURVES 11So the lower triangular nonlinear system (3.23), (3.24), and (3.25) has nonsingularJaobian at the limit point h = 0, and the limit solution is(1; 2; : : : ; d�1) = (1; 0; : : : ; 0):Thus, by the impliit funtion theorem, there exists h0 > 0, suh that for all h; 0 �h � h0, there is a unique monotone solution p of the system (3.17), i.e., p(t) = t,independently of h. Consequently the system (3.6) has a unique solution (3.13). Notethat this does not ontradit the onlusion of Lemma 3.3 sine there the data wereonstants, but here they are moving towards the boundary together with the solution.Consider now the general ase, the step �ve of the proofs. Without loss of gen-erality, one may assume that Di are all positive. Let us join the partiular data D�i ,de�ned in (3.14), and the general data Di with a onvex homotopy,Di(�) := (1� �)D�i + �Di > 0; � 2 [0; 1℄:LetHHHHHHHHH(ttttttttt; �;�) := � �_!(ti)�d+1i=1 � �(�1)d+1�i�Di�1(�) +Di(�)��d+1i=1 ; � 2 [0; 1℄;so that the system (3.7) is simpli�ed toHHHHHHHHH(ttttttttt; �;�) = 000000000:For eah �xed � 2 [0; 1℄ the requirements of Lemma 3.3 are met, so HHHHHHHHH has no zeroarbitrarily lose to the boundary. But the interval [0; 1℄ is ompat, and the dataDi(�) depend ontinuously on �. Thus the term D`(�) in (3.12) an be boundedindependently of �,jD`(�)j � inf�2[0;1℄ jD`(�)j = min�2[0;1℄ jD`(�)j = onst` � onst > 0;and the ontradition that proves the Lemma 3.3 holds uniformly. So a ompat setD � fttttttttt j t0 < t1 < � � � < td < td+1g � f� j 0 � � <1)g;has to exist, suh that HHHHHHHHH does not vanish at the boundary of D for any � 2 [0; 1℄. Butthen Brouwer's degree ([2, pp.52-53℄) of HHHHHHHHH is invariant for � 2 [0; 1℄ on D. In HHHHHHHHH , onlythe data depend on �, and a brief look at the homotopy reveals that its Jaobian issimply J(ttttttttt; �), as given in (3.8). This simpli�es Brouwer's degree toX(ttttttttt;�)2D;HHHHHHHHH(ttttttttt;�;�)=0 sign� detJ(ttttttttt; �) �:But by Lemma 3.2, det J vanishes nowhere in D, and Brouwer's degree is furthersimpli�ed to � # f(ttttttttt; �) j (ttttttttt; �) 2 D; HHHHHHHHH(ttttttttt; �;�) = 0g;so it provides the exat ount of zeroes in D. But the partiular problemHHHHHHHHH(ttttttttt; �; 0) = 0has a unique solution, so have all HHHHHHHHH(ttttttttt; �;�).In order to omplete the proof of Theorem 1.1, it remains to show that BBBBBBBBB, basedupon ttttttttt that we have just determined, is a regular urve.



12 JERNEJ KOZAK AND EMIL �ZAGARNote that BBBBBBBBB an also be written asBBBBBBBBB = d+1Xj=0 TTTTTTTTT j`j ; `j(t) := !(t)(t� tj) _!(tj) :If BBBBBBBBB is not regular, then _BBBBBBBBB(~t) = 0 = �TU( _̀i(~t))d+1i=1for some ~t 2 [0; 1℄. Sine ker�T is spanned by !!!!!!!!!� = U!!!!!!!!!, given in (3.5) and (3.3), thevetor �`i(~t)�d+1i=1 should be proportional to !!!!!!!!!. But then_!(ti) _̀i(~t) = � _!(~t)~t� ti � !(~t)(~t� ti)2� = onstfor all ti 6= ~t, whih implies that at least two of ti are equal, a ontradition that on-�rms the regularity of the interpolating urve. The proof of Theorem 1.1 is omplete.Theorem 1.3 follows from Lemma 3.2. The ontinuation method ([1℄) always leadsto the solution if the Jaobian of the system is globally nonsingular.Let us �nally prove Theorem 1.2. If the interpolating polynomial BBBBBBBBB exists, thenthe orresponding !!!!!!!!!� 2 ker�T , as de�ned in (3.5), learly satis�es S�(!!!!!!!!!�) = d.On the other hand, if xxxxxxxxx = (xi)di=0 2 ker�T an be found suh that S�(xxxxxxxxx) = d,than xi may replae the right hand side (�1)d+1�iDi in (3.6). The existene part ofTheorem 1.1 still arries through, and Theorem 1.2 is proved.Let us illustrate the last proof by a simple example. Let data be given on a linein a plane, TTTTTTTTT 0 = � 00� ; TTTTTTTTT 1 = 13 � 11� ; TTTTTTTTT 2 = 12 � 11� ; TTTTTTTTT 3 = � 11� :(3.26)Then �T = 16 � 2 1 32 1 3� ;and rank �T = 1. Furthermore, the vetor xxxxxxxxx 2 ker�T suh that S�(xxxxxxxxx) = d = 2 isgiven as a parametri familyxxxxxxxxx = xxxxxxxxx(�) := (�;�3� 2�; 1) ; � > 0:For suh an xxxxxxxxx, the system (3.6) has the solutiont1 = t1(�) := 11� �  1�s2�(�+ 2)3(�+ 1) ! ; t2 = t2(�) := t1(�) +r �6(�+ 1)(�+ 2) ;and the data (3.26) are interpolated by a quadratially parametrized lineBBBBBBBBB = �� 11� ; �(t) := (1� 2t22)t� (1� 2t2)t22t2(1� t2) :Further more, the urve BBBBBBBBB is regular i�1� 1p2 � t2 � 1p2 ; �p3� 1��p2� 1� � � � �p2 + 1��2 +p6� :



ON GEOMETRIC INTERPOLATION BY POLYNOMIAL CURVES 13There is only one free parameter to derease the degree of BBBBBBBBB, and t2 = t2(2) = 12redues the parametrisation to the simplest ase �(t) = t. This parametrisation isregular sine it is a unique solution of degree one of the interpolation problem. Thisonludes the proofs. REFERENCES[1℄ E. L. Allgower and K. Georg, Numerial Continuation Methods, Springer-Verlag, 1990.[2℄ M. S. Berger, Nonlinearity and Funtional Analysis, Aademi Press, 1977.[3℄ C. de Boor, K. H�ollig, and M. Sabin, High auray geometri Hermite interpolation,Comput. Aided Geom. Design, 4 (1987), pp. 269{278.[4℄ Y. Y. Feng and J. Kozak, On spline interpolation of spae data, in Mathematial Methodsfor Curves and Surfaes II, M. D�hlen, T. Lyhe, and L. L. Shumaker (eds.), VanderbiltUniversity Press, Nashville, 1998, pp. 167{174.[5℄ K. H�ollig and J. Koh, Geometri Hermite interpolation with maximal order and smoothness,Comput. Aided Geom. Design, 13 (1996), 681{695.[6℄ J. Kozak and E. �Zagar, On urve interpolation in Rd, in Curve and Surfae Fitting - SaintMalo 1999, A. Cohen, C. Rabut, and L. L. Shumaker (eds.), Vanderbilt University Press,Nashville, 2000, 263{273.[7℄ C. Krattenthaler, Advaned determinant alulus, S�em. Lothar. Combin., 42 (1999).[8℄ K. M�rken, Parametri interpolation by quadrati polynomials in the plane, in MathematialMethods for Curves and Surfaes, M. D�hlen, T. Lyhe, and L. L. Shumaker (eds.),Vanderbilt University Press, Nashville, 1995, 385{402.[9℄ K. M�rken and K. Sherer, A general framework for high-auray parametri interpolation,Math. Comp., 66 (1997), pp. 237{260.[10℄ R. Shabak, Interpolation in R2 by pieewise quadratis visually C2 B�ezier polynomials,Comput. Aided Geom. Design, 6 (1989), 219{233.[11℄ K. Sherer, Parametri polynomial urves of loal approximation of order 8, in Curve andSurfae Fitting - Saint Malo 1999, A. Cohen, C. Rabut, and L. L. Shumaker (eds.),Vanderbilt University Press, Nashville, 2000, 375{384.[12℄ E. �Zagar , On G2 ontinuous spline interpolation of urves in Rd, BIT, 42 (2002), 670{688.


