
On Curve Interpolation in IRdJernej Kozak and Emil �ZagarAbstra
t. In this paper the interpolation by G2 
ontinuous spline 
urvesof degree n in IRd is studied. There are r interior and two boundary datapoints interpolated on ea
h segment of the spline 
urve. The general formof the spline 
urve, as well as the de�ning system of nonlinear equationsare derived. The asymptoti
 existen
e of the solution, and the approxi-mation order are studied for the polynomial 
ase only. It is shown thatthe optimal approximation order is a
hieved, and asymptoti
 existen
e isestablished provided the relation r = n� 2 is satis�ed. These 
on
lusionshold independently of d. It is also pointed out that the underlying analysis
ould not be 
arried over to the 
ase r = n� 1.x1. Introdu
tionThe interpolation problem 
onsidered is the following. Let the pointsTTTTTTTTT 0; TTTTTTTTT 1; : : : ; TTTTTTTTTN 2 IRd; TTTTTTTTT j 6= TTTTTTTTT j+1; all j; d � 2; (1)and the tangent dire
tions ddddddddd0; dddddddddN (2)at the boundary points be given. Find a G2 
ontinuous spline 
urve BBBBBBBBBn ofdegree n whi
h interpolates the pres
ribed data.The problem appeared �rst as a parti
ular limit 
ase in [2℄, and wasfurther generalized in several papers, among them in [3{5, 6, 9{10℄. A generalapproa
h to the approximation order a
hieved 
an be found in [8℄.Here, the general setup is ta
kled. The interpolating spline 
urve in theLagrange form is established and the de�ning system of nonlinear equationsis derived in general. However, the asymptoti
 existen
e of the solution (i.e.the existen
e of the solution when given points are sampled densely enough)and the approximation order turned out too 
omprehensive to be studied herein a general framework. The positive 
on
lusions for the single segment 
asewhen r = n � 2 are established. It is possible to extend these results tothe m-segment spline 
urve, but the proofs are not short, and will appearSaint-Malo Pro
eedings 1XXX, XXX, and Larry L. S
humaker (eds.), pp. 1{10.Copyright o
 2000 by Vanderbilt University Press, Nashville, TN.ISBN 1-xxxxx-xxx-x.All rights of reprodu
tion in any form reserved.



2 Jernej Kozak and Emil �Zagarelsewhere. On the 
ontrary, as one 
ould guess from [8℄, the 
ase r = n� 1 isnot en
ouraging.Why would one use the G2-
ontinuous splines as interpolating 
urves?Quite 
learly, the derivative 
ontinuity at the breakpoints be
omes in thisway independent of the lo
al parametrisation. Also, these 
urves 
ould beseen as a generalization of the odd order spline fun
tion interpolation at knots,applied so su

essfully in many 
ases. The order of G-
ontinuity 2 is pinneddown by the human eye, sometimes quite important in CAGD: it 
an dete
tthe 
ontinuity, the 
ontinuity of the tangent dire
tion and the 
urvature, buthardly higher order geometri
 quantities.Throughout the paper bold fa
ed letters will stand for ve
tors, and or-dinary ones for s
alars. The dot produ
t on IRd will be denoted by ��������� and itsimplied norm by jj���������jj. Derivatives with respe
t to the global (or lo
al) pa-rameter will be denoted by _________ (or d=d�), and those with respe
t to the naturalparameter by 0.Now let BBBBBBBBBn be a 
ontinuous spline 
urve of degree n with m segmentsBBBBBBBBB := BBBBBBBBBn : [�0; �m℄! IRdwith breakpoints �0 < �1 < : : : < �m;given pie
ewise as BBBBBBBBB(�) = BBBBBBBBB`(� � �`�1��`�1 ); � 2 [�`�1; �`℄;i.e., lo
ally parametrized on [0; 1℄. Suppose BBBBBBBBB interpolates the data (1), and(2). If r interior and two boundary points are to be met on ea
h segment,then N = m(r+1). Further, on the `-th segment the interpolation 
onditionsreadBBBBBBBBB`(t`;j) = TTTTTTTTT `;j := TTTTTTTTT (`�1)(r+1)+j ; j = 0; 1; : : : ; r + 1; ` = 1; 2; : : : ;m; (3)where 0 =: t`;0 < t`;1 < � � � < t`;r+1 := 1;and (t`;j)rj=1 are the unknown parameters to be determined. Let xxxxxxxxx ^ yyyyyyyyy 7!(xiyj � xjyi)i<j denote the 2-wedge produ
t. The geometri
 
ontinuity of BBBBBBBBBrequires the tangent dire
tion 1jj _BBBBBBBBBjj _BBBBBBBBB (4)as well as the 
urvature 1jj _BBBBBBBBBjj3 _BBBBBBBBB ^ �BBBBBBBBB (5)to be 
ontinuous at the breakpoints. Additionally, at the boundary points thetangent dire
tions ddddddddd0 and dddddddddN have to be interpolated too, i.e.,ddddddddd0 ^ _BBBBBBBBB(�0) = _BBBBBBBBB(�m) ^ dddddddddN = 000000000: (6)
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Fig. 1. An interpolating spline 
urve with three segments .Fig. 1 gives an example of su
h an interpolating spline 
urve for r = 1, n = 3,and d = 3. A brief look at the 
onditions (3){(6) reveals that the number of in-dependent equations would be equal to the number of independent unknownsif d n� (d� 1) r = 3 d� 2: (7)As already observed in [5℄, for �xed d this Diophantine equation always hasan in�nite number of nonnegative solutions. The following lemma gives itsgeneral solution.Lemma 1. The possible 
hoi
es of pairs r and n that satisfy (7) for �xed dare given by r = d� 2 + dk; n = d+ (d� 1)k; k = 0; 1; : : : : (8)Proof: The relation (7) 
an be rewritten asd(n� d)� (d� 1)(r � d+ 2) = 0:Sin
e d � 2, the numbers d and d� 1 are relatively prime. So d must divider � d+ 2, and d� 1 must divide n� d, i.e.,r � d+ 2d = n� dd� 1 = kfor an integer k. But r = d � 2 + dk � 0 implies k � 2d � 1 > �1; and the
on
lusion follows.



4 Jernej Kozak and Emil �Zagarx2. The De�ning EquationsSeveral approa
hes were used to simplify the 
onditions (3){(6) for parti
ular
hoi
es of d, n, and r. Here we show that this 
an be done in general, whi
hwill provide an opportunity to unify the 
omputer programs. Let us 
onsidera single segment �rst. In this 
ase, the data to be interpolated are the pointsTTTTTTTTT 0; TTTTTTTTT 1; : : : ; TTTTTTTTT r+1, TTTTTTTTT j 6= TTTTTTTTT j+1, as well as tangent dire
tions ddddddddd0, dddddddddr+1 at theboundary points. Suppose r and n are given by (8). Consider the 
ase n = r+2�rst, i.e., k = 0. The interpolating polynomial 
urve 
an be written expli
itlyin Lagrange form as BBBBBBBBB := bbbbbbbbb ! + r+1Xj=0 TTTTTTTTT jLjwith !(t) := r+1Yj=0(t� tj); Lj(t) := !(t)(t� tj)!0(tj) ; (9)tj := t1;j , and the values (tj)rj=1, to be determined. Here bbbbbbbbb 2 IRd denotes theunknown leading 
oeÆ
ient ve
tor. If k � 1, one hasr + 2 = d(k + 1) > d(k + 1)� k = n;and BBBBBBBBB is of degree at most r + 1, i.e.,BBBBBBBBB = r+1Xj=0 TTTTTTTTT jLj :In parti
ular, this imposes additional 
onditionsdegree r+1Xj=0 TTTTTTTTT jLj � n (10)for k > 1. An easy way to meet the tangent dire
tion 
onditions (6) is tointrodu
e two additional (stri
tly positive) real unknowns, �0 and �r+1, andrequire _BBBBBBBBB(t0) = �0ddddddddd0; _BBBBBBBBB(tr+1) = �r+1dddddddddr+1: (11)Let ��1 = �0 := t0; �j := tj ; j = 1; 2; : : : ; r; �r+2 = �r+1 := tr+1: (12)Sin
e BBBBBBBBB is a polynomial of degree � n, the divided di�eren
e, based uponn+ 2 = r + 4� kpoints maps it to zero. So the 
onditions (11) and (10) 
an be written in a
ompa
t form as[�j�1; �j; : : : ; �j+r+2�k℄BBBBBBBBB = 0; j = 0; 1; : : : ; k; (13)
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h is a system of d(k + 1) nonlinear equations for r + 2 = d(k + 1) s
alarunknowns �0; t1; t2; : : : ; tr; �r+1: (14)In the 
ase n = r+2, one has to determine additionally the 
oeÆ
ient ve
torbbbbbbbbb, for example asbbbbbbbbb = [t0; t0; t1; : : : ; tr; tr+1℄BBBBBBBBB = [t0; t1; : : : ; tr; tr+1; tr+1℄BBBBBBBBB: (15)Now, for an m-segment spline 
urve, the dire
tions ddddddddd`; ` = 1; 2; : : : ;m�1, areunknown, as well as�`;0; t`;1; t`;2; : : : ; t`;r; �`;r+1; ` = 1; 2; : : : ;m: (16)But one 
an still write the interpolation 
onditions on the `-th segment as[�`;j�1; �`;j; : : : ; �`;j+r+2�k℄BBBBBBBBB` = 0; j = 0; 1; : : : ; k; (17)where �`;j are de�ned as in (12), but this time for the 
omposite 
ase. Inaddition, the missing (d� 1)(m� 1) equations are supplied by the 
ontinuity
onditions of the 
urvature (5).x3. Asymptoti
 Existen
e and Approximation OrderThe system of equations based on (17) and 
ontinuity of 
urvature (5) is non-linear, and one of the approa
hes to study it is to assume that the data (1) and(2) are based upon a smooth underlying regular parametri
 
urve fffffffff : I ! IRd,parametrized by the ar
length s. The lo
al expansion of the 
urve fffffffff , and thedata TTTTTTTTT `;j (sampled densely enough), give rise to an asymptoti
 analysis of thenonlinear system. The simplest way to obtain the lo
al expansion is to use theFrenet frame as the lo
al 
oordinate system, and the Frenet-Serett formulaeto obtain this expansion. Let (eeeeeeeeei(s))di=1 denote the Frenet frame, withfffffffff 0 = eeeeeeeee1: (18)The Frenet-Serret formulae readeeeeeeeee01(s) = �1(s)eeeeeeeee2(s);eeeeeeeee0i(s) = ��i�1(s)eeeeeeeeei�1(s) + �i(s)eeeeeeeeei+1(s); i = 2; 3; : : : ; d� 1; (19)eeeeeeeee0d(s) = ��d�1(s)eeeeeeeeed�1(s);where �i are �rst d� 1 prin
ipal 
urvatures of fffffffff , expanded as�i(s) = �i0 + 11!�i1s+ 12!�i2s2 + : : : : (20)Sin
e fffffffff is a regular 
urve, �i0 � 
onst > 0; i = 1; 2; : : : ; d � 2. We willadditionally assume that �d0 � 
onst > 0. Beginning with (18), the higher



6 Jernej Kozak and Emil �Zagarderivatives of fffffffff 
an be 
omputed by (19) and (20). This produ
es the requiredexpansionfffffffff(s) = fffffffff(0) + fffffffff 0(0)s+ 12!fffffffff 00(0)s2 + � � �= fffffffff(0) + (s� 16�21;0s3 + � � �)eeeeeeeee1(0) (21)+ (12�1;0s2 + 16�1;1s3 + � � �)eeeeeeeee2(0) + (16�1;0�2;0s3 + � � �)eeeeeeeee3(0) + � � �Let us now 
onsider the single segment 
ase of the interpolation problemwith data based on a smooth fffffffff : [0; h℄! IRd,ddddddddd0 = fffffffff 0(�0h); TTTTTTTTT j = fffffffff(�jh); j = 0; 1; : : : ; r + 1; dddddddddr+1 = fffffffff 0(�r+1h);with points separated independently of h, i.e.,0 := �0 < �1 < � � � < �r < �r+1 := 1:Sin
e translation and rotation do not in
uen
e the asymptoti
 analysis, wemay assume fffffffff(0) = 000000000, andeeeeeeeeei(0) = (Æi;j)dj=1; i = 1; 2; : : : ; d: (22)Then, with the help of (21), one obtainsfffffffff(�jh) =  1i!�ijhi i�1Yq=0�q;0 +O(hi+1)!di=1 ; (23)and a similar expression for fffffffff 0(h). Sin
e the divided di�eren
e is a linearfun
tional, we 
an normalize the system (13) by multiplying the data valuesby D�1, with D := diag 1i! hi i�1Yq=1�q;0!di=1 :Let efffffffff(s) := (si)di=1 denote the leading part of the normalized fffffffff . Then[t0; t0; t1; : : : ; tr; tr+1; tr+1℄D�1BBBBBBBBB = [t0; t0; t1; : : : ; tr; tr+1; tr+1℄eBBBBBBBBB +O(h);(24)and eBBBBBBBBB is a polynomial of degree � n = r + 2 that satis�es the interpolation
onditions eBBBBBBBBB0(tj) = e�jefffffffff 0(�j); j = 0; r + 1;eBBBBBBBBB(tj) = efffffffff(�j); j = 0; 1; : : : ; r; r+ 1;where e�0 := �0h ; e�r+1 := �r+1h :



On Curve Interpolation in IRd 7Note that all the 
omponents of efffffffff are polynomials of degree � d = r+2. Thisimplies that [�0; �0; �1; : : : ; �r; �r+1; �r+1℄efffffffff = 0; (25)and the solution of (24) in the limit h! 0 now reads asttttttttt� := (e��0; t�1; t�2; : : : ; t�r; e��r+1) = (1; �1; �2; : : : ; �r; 1): (26)To prove the existen
e of the solution for h small enough, it is suÆ
ient toshow that the Ja
obian of the system (24) is nonsingular at the limit (26).The Ja
obian will be determined with the help of the following fa
t: if xj isdi�erent from all the other points xi, and if a fun
tion g is smooth enough,one has � ��xj [: : : ; xj ; : : :℄�g = ddxj �[: : : ; xj; : : :℄g�� g0(xj)Qi 6=j(xj � xi)= [: : : ; xj; xj; : : :℄g � g0(xj)Qi 6=j(xj � xi) : (27)
Consider now eBBBBBBBBB = �eBBBBBBBBB�efffffffff�+efffffffff . Sin
e eBBBBBBBBB�efffffffff = 0 at ttttttttt�, all its partial derivativeswith respe
t to tj vanish, and this di�eren
e 
ontributes to the Ja
obian atthe limit point ttttttttt� only in the �rst and last 
olumn, i.e.,���0 [t0; t0; t1; : : : ; tr; tr+1; tr+1℄�eBBBBBBBBB � efffffffff���ttttttttt� = 1(�0 � �r+1)e!0(�0)efffffffff 0(�0);���r+1 [t0; t0; t1; : : : ; tr; tr+1; tr+1℄�eBBBBBBBBB � efffffffff���ttttttttt� = 1(�r+1 � �0)e!0(�r+1)efffffffff 0(�r+1);(28)where ! is given by (9), and e! := !��ttttttttt� :The polynomial 
urve efffffffff does not depend on e�0; e�r+1, and from (27) and (25)one obtains the 
olumns 2; 3; : : : ; r + 1 with j = 1; 2; : : : ; r as� ��tj [t0; t0; t1; : : : ; tr; tr+1; tr+1℄� efffffffff ��ttttttttt� = � 1(�j � �0)(�j � �r+1)e!0(tj)efffffffff 0(�j):It is now straightforward to see that the Ja
obian at ttttttttt� is the Vandermondematrix V (�0; �1; : : : ; �r+1), multiplied by D1 := diag(i)di=1 from the left, andbyD2 := diag�� 1e!0(�0) ; 1�1(1� �1)e!0(�1) ; : : : ; 1�r(1� �r)e!0(�r) ; 1e!0(�r+1)�from the right. This prepares the proof of the following theorem.



8 Jernej Kozak and Emil �ZagarTheorem 2. The system (13) has a unique solution for h small enough. Theapproximation order of the resulting interpolating polynomial 
urve BBBBBBBBBn isoptimal, i.e., r + 4 = n+ 2.Proof: Sin
e the matri
es V (�0; �1; : : : ; �r+1), D1 and D2 are nonsingular,the Ja
obian at the limit point ttttttttt� is nonsingular, too, and the existen
e of aunique solution for h small enough is established. Furthermore, the unknownparameters are of the form�0 = �r+1 = h+O(h2); tj = �j +O(h); j = 1; 2; : : : ; r: (29)Sin
e there are r+2 points, as well as two dire
tions interpolated, the optimalapproximation order is quite 
learly � r + 4. The proof will now follow theapproa
h applied in [2℄, and extended in [5℄. It is based on a reparametrisationthat transforms the dire
tion interpolation to the derivative interpolation, andgives an estimate of the parametri
 approximation order as de�ned in [7℄.Re
all (22), and the fa
t that interpolation 
onditions are satis�ed. By [2℄and [5℄, it is now enough to 
on�rm that all the 
omponents of fffffffff and BBBBBBBBB 
anbe reparametrized by the ordinate of the �rst 
omponent of both 
urves. Asto fffffffff , for h small enough this fa
t is obvious. The �rst 
omponent behavesby (21) as s+O(s3), and the others at least as O(s2). To establish the same
on
lusion for BBBBBBBBB, it is enough to show that_BBBBBBBBB = 
 h(Æ1i)di=1 +O(h2); 
 6= 0: (30)Further, the optimal approximation order proof depends on the additionalrelations BBBBBBBBB(q) = O(hq); q = 2; 3; : : : ; r + 2: (31)The result required then follows from the standard error estimate of interpo-lation, and the fa
t that the (r+4)-th derivative of BBBBBBBBB with respe
t to the newparameter is bounded independently of h. Let us verify the relations (30) and(31). Re
all �rsttq = r+1Xj=0 tqjLj(t); q = 0; 1; : : : ; r + 1; tr+2 = !(t) + r+1Xj=0 tr+2j Lj(t): (32)The divided di�eren
e [t0; t0; t1; : : : ; tr; tr+1℄ maps polynomials of degree �r+1 = d�1 to zero, and depends 
ontinuously on its arguments if applied toa smooth fun
tion. Thus bbbbbbbbb by (15) and (23) near the limit point ttttttttt� behaveslike bbbbbbbbb = �O(hd);O(hd); : : : ;O(hd); �d hd +O(hd+1)�T ;where �i =Qi�1q=0 �q;0 > 0. On the other hand, (29) and (32) imply thatr+1Xj=0 TTTTTTTTT jLj(t) = r+1Xj=0 fffffffff(�jh)Lj(t)= ��1 h t; : : : ; �d�1 hd�1 td�1; �d hd (td � !(t))�T (1 +O(h)):



On Curve Interpolation in IRd 9But BBBBBBBBB(q)(t) = bbbbbbbbb !(t)(q) + r+1Xj=0 TTTTTTTTT jLj(t)(q); q = 1; 2; : : : ; r + 2;and (31) follows. The proof is 
omplete.There is no hope that this approa
h 
ould be used for all k. In fa
t, itfails already for k = 1, as we will show now. By (13), the equation (24) isrepla
ed by[t0; t0; t1; : : : ; tr; tr+1℄D�1BBBBBBBBB = [t0; t0; t1; : : : ; tr; tr+1℄eBBBBBBBBB +O(h);[t0; t1; : : : ; tr; tr+1; tr+1℄D�1BBBBBBBBB = [t0; t1; : : : ; tr; tr+1; tr+1℄eBBBBBBBBB +O(h):Further, as in the proof of Theorem 2, the �rst 
olumn of the Ja
obian isdetermined from���0 [t0; t0; t1; : : : ; tr; tr+1℄�eBBBBBBBBB � efffffffff���ttttttttt� = 1e!0(�0)efffffffff 0(�0);���0 [t0; t1; : : : ; tr; tr+1; tr+1℄�eBBBBBBBBB � efffffffff���ttttttttt� = 000000000;the last 
olumn from���r+1 [t0; t0; t1; : : : ; tr; tr+1℄�eBBBBBBBBB � efffffffff���ttttttttt� = 000000000;���r+1 [t0; t1; : : : ; tr; tr+1; tr+1℄�eBBBBBBBBB � efffffffff���ttttttttt� = 1e!0(�r+1)efffffffff 0(�r+1);and the other 
olumns from� ��tj [t0; t0; t1; : : : ; tr; tr+1℄� efffffffff ��ttttttttt� = � 1(�j � �0)e!0(tj)efffffffff 0(�j);� ��tj [t0; t1; : : : ; tr; tr+1; tr+1℄� efffffffff ��ttttttttt� = � 1(�j � �r+1)e!0(tj)efffffffff 0(�j):After normalizing the Ja
obian from the left by D�11 , and by D�12 from theright one obtains the matrix A := (aij)2di;j=1 withai;1 = Æi;1; i = 1; 2; : : : ; 2d;ai;2d = 0; ai+d;2d = 1; i = 1; 2; : : : ; d;andai;j = �ij�1 � �i�1j�1; ai+d;j = �ij�1; i = 1; 2; : : : ; d; j = 2; 3; : : : ; 2d� 1:A simple rank preserving transformationai;j 7! ai;j � ai�1;j ; i = 2d; 2d� 1; : : : ; d+ 1; j = 1; 2; : : : ; 2d;transforms A to a matrix with row i equal to row i + d for i = 2; 3; : : : ; d. Itis now easy to see that the rank of the matrix A is d + 1, and 
onsequentlydim ker A = d� 1. Thus, sin
e the Ja
obian is singular, some other approa
hsu
h as [1℄, pp. 154{155, should be applied to 
arry out the asymptoti
 anal-ysis.
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