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Abstract In this paper, four-pencil lattices on tetrahedral partitions are
studied. The explicit representation of a lattice, based upon barycentric co-
ordinates, enables us to extend the lattice from a single tetrahedron to a
tetrahedral partition. It is shown that the number of degrees of freedom is
equal to the number of vertices of the tetrahedral partition. The proof is
based on a lattice split approach.
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1 Introduction

The existence and the uniqueness of the solution of a multivariate polynomial
interpolation problem essentially depends on the geometrical distribution of
interpolation points in a domain. It is well-known that the Lagrange inter-
polation problem for a set of

(
n+d

d

)
interpolation points is correct in Πd

n (the
space of polynomials in d variables of total degree ≤ n) if and only if the
points do not lie on an algebraic hypersurface of degree ≤ n. This property
is hard to verify on the run, particularly by numerical computations.

There have been various attempts to construct a lattice on
(
n+d

d

)
inter-

polation points that admits a correct interpolation problem in Πd
n in ad-

vance. Since ([3]), these constructions mainly consist of choosing the points
as appropriate intersections of hyperplanes. It is well-known that the lattices
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which satisfy the GC (geometric characterization) condition admit correct
interpolation ([2],[3]). Among them, principal lattices and the more general
(d + 1)-pencil lattices ([7]) are perhaps the most important.

In [5] a new approach to (d+1)-pencil lattice, based upon control points,
has been presented and the barycentric coordinates of lattice points were
derived. In this paper we show that such a representation enables a natural
extension of a four-pencil lattice from a tetrahedron to a regular tetrahedral
partition. Lattices on regular tetrahedral partitions, where the points on adja-
cent triangles coincide, are important, since they provide at least continuous
piecewise polynomial interpolants. In [4] this problem has already been dis-
cussed for the case d = 2, i.e., three-pencil lattices on triangulations. It turns
out that the 3D case is much more complicated.

The paper is organized as follows. In Section 2 some conditions, which
allow the construction of lattices on adjacent tetrahedrons are given. In Sec-
tion 3 the extension of a four-pencil lattice from a tetrahedron to a tetrahedral
partition is presented. The extended lattice has V degrees of freedom, where
V is the number of vertices of a tetrahedral partition.

2 Matching of two lattices

For our purpose the ordering of the vertices of a tetrahedron will be impor-
tant. Therefore

4 := 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉, TTTTTTTTT i ∈ R3, i = 0, 1, 2, 3,

will denote a tetrahedron with a prescribed order of vertices TTTTTTTTT i. A four-
pencil lattice of order n on 4 is generated by particular four pencils of n +1
planes, where each pencil intersects at a center CCCCCCCCCi, i = 0, 1, 2, 3, a line in
R3. The lattice is actually based upon four control points PPPPPPPPP 0, PPPPPPPPP 1, PPPPPPPPP 2, PPPPPPPPP 3,
where PPPPPPPPP i ∈ R3 lies on the line through the vertices TTTTTTTTT i and TTTTTTTTT i+1 outside of
the segment TTTTTTTTT iTTTTTTTTT i+1. The center CCCCCCCCCi is then a line through the control points
PPPPPPPPP i and PPPPPPPPP i+1 (Fig. 1). Note that here and throughout the paper, the indices
of control points, vertices, centers and lattice parameters are assumed to be
taken modulo d + 1.

Let γγγγγγγγγ = (γ0, γ1, γ2, γ3), γi ∈ N0 := N ∪ {0}, denote an index vector and
let |γγγγγγγγγ| := ∑3

i=0 γi. In [5], the barycentric coordinates of a four-pencil lattice
on a tetrahedron 4 = 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉 w.r.t. 4 were determined by four
free parameters ξξξξξξξξξ = (ξ0, ξ1, ξ2, ξ3), ξi > 0, as

Bγγγγγγγγγ (ξξξξξξξξξ) =
1
D

(
αn−γ0 [γ0]α , ξ0α

n−γ0−γ1 [γ1]α , ξ0ξ1α
γ3 [γ2]α , ξ0ξ1ξ2 [γ3]α

)
,

(1)
D = αn−γ0 [γ0]α + ξ0α

n−γ0−γ1 [γ1]α + ξ0ξ1α
γ3 [γ2]α + ξ0ξ1ξ2 [γ3]α ,

where γγγγγγγγγ ∈ N4
0, |γγγγγγγγγ| = n,

α := n

√√√√
3∏

i=0

ξi > 0, and [j]α :=
j−1∑

i=0

αi =





j, α = 1,
1− αj

1− α
, α 6= 1,

j ∈ N0.
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Fig. 1 A four-pencil lattice with its control points PPPPPPPPP i and centers CCCCCCCCCi.

The results which follow will be a basis for the extension of a four-pencil
lattice of order n from a tetrahedron to a tetrahedral partition. We will first
answer the question when two lattices on tetrahedrons 4 and 4′ match on
a common face.

Theorem 1 Let 4 = 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉 and 4′ = 〈TTTTTTTTT ′0, TTTTTTTTT ′1, TTTTTTTTT ′2, TTTTTTTTT ′3 〉 be given
tetrahedrons and let Bγγγγγγγγγ(ξξξξξξξξξ) and Bγγγγγγγγγ(ξξξξξξξξξ′) be the barycentric coordinates w.r.t.
4 and 4′ of four-pencil lattices of order n on 4 and 4′, respectively. Let
αn =

∏3
j=0 ξj and α′n =

∏3
j=0 ξ′j. The lattices coincide on the common edge

〈TTTTTTTTT i0 , TTTTTTTTT i1 〉 = 〈TTTTTTTTT ′i′0 , TTTTTTTTT
′
i′1
〉, 0 ≤ i0 < i1 ≤ 3, 0 ≤ i′0 < i′1 ≤ 3,

iff 


i1−1∏

j=i0

ξj


 α′ =




i′1−1∏

j=i′0

ξ′j


α, (2)

in the case n = 2, and



i1−1∏

j=i0

ξj =
i′1−1∏

j=i′0

ξ′j and α′ = α


 or




i1−1∏

j=i0

ξj = αn

i′1−1∏

j=i′0

ξ′j and α′α = 1


 ,

(3)
for n ≥ 3.

Proof By (1), the barycentric coordinates w.r.t. 〈TTTTTTTTT i0 , TTTTTTTTT i1 〉, 0 ≤ i0 < i1 ≤ 3,
of the first lattice on 〈TTTTTTTTT i0 , TTTTTTTTT i1 〉 are

(
[n]α − [`]α

[n]α − [`]α + [`]α
∏i1−1

j=i0
ξj

,
[`]α

∏i1−1
j=i0

ξj

[n]α − [`]α + [`]α
∏i1−1

j=i0
ξj

)
, ` = 0, . . . , n.
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Therefore the lattices coincide on 〈TTTTTTTTT i0 , TTTTTTTTT i1 〉 = 〈TTTTTTTTT ′i′0 , TTTTTTTTT
′
i′1
〉, 0 ≤ i0 < i1 ≤

3, 0 ≤ i′0 < i′1 ≤ 3, iff

(
[`]α

[n]α − [`]α

) i1−1∏

j=i0

ξj =
(

[`]α′
[n]α′ − [`]α′

) i′1−1∏

j=i′0

ξ′j , ` = 1, 2, . . . , n− 1. (4)

Since the case n = 2 is straightforward, let n ≥ 3. By defining ζ0 :=
∏i1−1

j=i0
ξj

and ζ ′0 :=
∏i′1−1

j=i′0
ξ′j , the proof of [4, Theorem 2] shows that the system (4)

has precisely two solutions and they are given by (3). ut
Since dealing with barycentric coordinates one can similarly show that the
lattices coincide on the common edge

〈TTTTTTTTT i0 , TTTTTTTTT i1 〉 = 〈TTTTTTTTT ′i′0 , TTTTTTTTT
′
i′1
〉, 0 ≤ i0 < i1 ≤ 3, 0 ≤ i′1 < i′0 ≤ 3,

iff
i1−1∏

j=i0

ξj = α′α
i′0−1∏

j=i′1

ξ′−1
j , (5)

for the case n = 2, and



i1−1∏

j=i0

ξj = αn

i′0−1∏

j=i′1

ξ′−1
j and α′ = α


 or




i1−1∏

j=i0

ξj =
i′0−1∏

j=i′1

ξ′−1
j and α′α = 1


 ,

(6)
for n ≥ 3.

Consider now two four-pencil lattices that share a lattice on a common
triangle of tetrahedrons 4 = 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉 and 4′ = 〈TTTTTTTTT ′0, TTTTTTTTT ′1, TTTTTTTTT ′2, TTTTTTTTT ′3 〉
(Fig. 2).

Fig. 2 Matching of two lattices on a common triangle of tetrahedrons.

Corollary 1 Let αn =
∏3

j=0 ξj 6= 1 and let

4̃ := 〈TTTTTTTTT i0 , TTTTTTTTT i1 , TTTTTTTTT i2 〉 = 〈TTTTTTTTT ′i′0 , TTTTTTTTT
′
i′1

, TTTTTTTTT ′i′2 〉,
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0 ≤ i0 < i1 < i2 ≤ 3, 0 ≤ i′0 < i′1 < i′2 ≤ 3, be the common triangle of
tetrahedrons. Then the lattices coincide on 4̃ iff

ik+1−1∏

j=ik

ξj =
i′k+1−1∏

j=i′
k

ξ′j , k = 0, 1, and α′ = α. (7)

Proof The lattices coincide on 4̃ iff they coincide on all three edges of 4̃.
For n = 2, the lattices coincide on 4̃ iff the equations




ik+`−1∏

j=ik

ξj


α′ =




i′k+`−1∏

j=i′
k

ξ′j


 α, k = 0, 1, ` = 1, . . . , 2− k,

that are equivalent to (7), hold. Let now n ≥ 3 and recall (3). Then for the
first possibility, α′ = α, the lattices coincide on 4̃ iff (7) holds, and for the
second one, α′α = 1, iff

ik+`−1∏

j=ik

ξj = αn

i′k+`−1∏

j=i′
k

ξ′j , k = 0, 1, ` = 1, . . . , 2− k. (8)

But from (8) we obtain α = α2, which is a contradiction, since α 6= 1. ut
Note that with the assumption α = 1 some further analysis could be easier
but we would loose a degree of freedom ([4]).

The following corollary will be important when dealing with tetrahedral
partitions in the next section.

Corollary 2 Let 4 = 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉 be a tetrahedron and let Bγγγγγγγγγ(ξξξξξξξξξ) be
the barycentric coordinates w.r.t. 4 of the lattice on 4. Let Bγγγγγγγγγ(ξξξξξξξξξ′) be the
barycentric coordinates w.r.t. 4′ of the lattice on 4′, where

4′ = 〈TTTTTTTTT ′0, TTTTTTTTT ′1, TTTTTTTTT ′2, TTTTTTTTT ′3 〉 := 〈TTTTTTTTTσ(0), TTTTTTTTT σ(1), TTTTTTTTTσ(2), TTTTTTTTTσ(3) 〉, σ ∈ C4,

and C4 is the cyclic group of order 4. Let αn =
∏3

j=0 ξj 6= 1. Then the lattices
coincide on 4 iff

ξ′i = ξσ(i), i = 0, 1, 2, 3. (9)

Proof The lattices coincide on 4 iff they coincide on all edges of 4. Using
relations (2), (3), (5) and (6), Corollary 1, and the fact |σ(i)−σ(j)| = |i− j|,
lattices match on the edges 〈TTTTTTTTT ′j , TTTTTTTTT ′j+1 〉 = 〈TTTTTTTTTσ(j), TTTTTTTTT σ(j+1) 〉, j = 0, 1, 2, and
〈TTTTTTTTT ′0, TTTTTTTTT ′2 〉 = 〈TTTTTTTTTσ(0), TTTTTTTTTσ(2) 〉 iff (9) holds. It is then straightforward to verify
the matching of the lattices on the other two edges. ut

Note that for σ /∈ D4, where D4 is the dihedral group of order 4, the
positions of centers would not be the same for both lattices and therefore the
lattices would not coincide. Since we will not need the whole dihedral group
in the next section, only the cyclic subgroup has been considered.
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3 Tetrahedral partition

Now, our goal is to extend the four-pencil lattice from a single tetrahedron
to a regular tetrahedral partition. Recall that a partition is regular if every
pair of adjacent tetrahedrons have either a point, an edge or the whole trian-
gle in common, and that each tetrahedron has at least one facet in common
with another tetrahedron. This extension should be done in such a way that
the lattices on any two adjacent tetrahedrons coincide on common faces of
tetrahedrons (Fig 2). We will not only prove that such an extension exists,
but even more, that a lattice obtained in this way has the maximal possible
number of parameters of freedom. First consider a particular case of tetra-
hedral partition, i.e., a star in R3. Recall that a star in R3 of degree m is a
tetrahedral partition with exactly one inner vertex (of the degree m) ([6]).

Lemma 1 Let S be a star of tetrahedrons of degree V − 1. Then there exists
a four-pencil lattice on S and there are V degrees of freedom to construct it.

Proof We will first prove the lemma for the minimal star S0, which consists of
four tetrahedrons. Then we will show how an arbitrary star can be obtained
from S0 and how the lattice on S0 can be extended to the lattice on S. With

〈TTTTTTTTT j0 , TTTTTTTTT j1 , TTTTTTTTT j2 〉i, j0, . . . , jk ∈ {0, 1, 2, 3},

we will denote the facet of the i-th tetrahedron. Let S̃ be the triangulation
obtained from a star S by removing the interior point of S and all its incident
edges. Further, let the inner point of a star for all tetrahedrons in S be
labeled by TTTTTTTTT 3 and let the other vertices of tetrahedrons in S0 be ordered as
in Fig. 3. Here and throughout the proof the most important is to assure

T0 T1

T2

T0

T1

T2

T0

T1

T2

T0

T1

T2

1 2

3

4

Fig. 3 On a sphere embedded triangulation S̃0 obtained from a minimal star S0

by removing the interior point TTTTTTTTT 3 and all its incident edges.

that a common triangle of any two adjacent tetrahedrons is of the form

〈TTTTTTTTT j0 , TTTTTTTTT j1 , TTTTTTTTT j2 〉i = 〈TTTTTTTTT j′0 , TTTTTTTTT j′1 , TTTTTTTTT j′2 〉i′ , j0 < j1 < j2, j′0 < j′1 < j′2. (10)

Note that we could also use some other ordering of vertices in S̃0, which sat-
isfies (10) for all common triangles. Since S0 is a star of degree 4, we have to
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prove that there are 5 degrees of freedom to construct a lattice on it. Let the
lattice on the i-th tetrahedron be determined by parameters ξ

(i)
j , j = 0, 1, 2, 3.

We have to assure the matching of lattices on the following triangles (Fig. 3)

〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 3 〉1 = 〈TTTTTTTTT 0, TTTTTTTTT 2, TTTTTTTTT 3 〉4, 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 3 〉2 = 〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉4,
〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 3 〉3 = 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 3 〉4, 〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉1 = 〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉2,
〈TTTTTTTTT 0, TTTTTTTTT 2, TTTTTTTTT 3 〉2 = 〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉3, 〈TTTTTTTTT 0, TTTTTTTTT 2, TTTTTTTTT 3 〉1 = 〈TTTTTTTTT 0, TTTTTTTTT 2, TTTTTTTTT 3 〉3.

By Corollary 1, all parameters ξ
(i)
j , i = 1, 2, 3, 4, j = 0, 1, 2, 3, are determined

by 5 parameters ξ
(1)
0 , ξ

(1)
1 , ξ

(1)
2 , ξ

(1)
3 and ξ

(2)
0 as

ξξξξξξξξξ(1) =
(
ξ
(1)
0 , ξ

(1)
1 , ξ

(1)
2 , ξ

(1)
3

)
, ξξξξξξξξξ(2) =

(
ξ
(2)
0 , ξ

(1)
1 , ξ

(1)
2 ,

ξ
(1)
0 ξ

(1)
3

ξ
(2)
0

)
,

ξξξξξξξξξ(3) =

(
ξ
(1)
0

ξ
(2)
0

, ξ
(1)
1 ξ

(2)
0 , ξ

(1)
2 , ξ

(1)
3

)
, ξξξξξξξξξ(4) =

(
ξ
(1)
0

ξ
(2)
0

, ξ
(2)
0 , ξ

(1)
1 ξ

(1)
2 , ξ

(1)
3

)
.(11)

Let E denote the number of edges, F the number of triangles, and Vk the
number of vertices with degree k in S̃. Since 2E =

∑
k kVk and 3F = 2E, the

Euler formula implies
∑

k Vk(6 − k) = 12. Therefore, S̃ must have a vertex
of degree less than six. Because every edge of S̃ must lie on two distinct
triangles, each vertex has degree greater than two. Thus there is at least
one vertex with degree 3, 4 or 5 in S̃. Let now S ′ denote a star of degree
V − 2. Any new star S of degree V − 1 can be obtained from S ′ by one of
the following operations (see [1], e.g.). Add a new vertex into S̃ ′ to split

(a) one tetrahedron into three tetrahedrons (Fig. 4),
(b) two tetrahedrons into four tetrahedrons (Fig. 5),
(c) three tetrahedrons into five tetrahedrons (Fig. 6).

T0 T1

T2

f
→

T0

T1

T2

T0

T1

T2

T0

T1

T2

Fig. 4 Adding a new vertex in order to split one tetrahedron into three tetrahe-
drons (Clough-Tocher split).

With all these operations we add one new vertex to S ′, so we have to prove
that for each operation the number of free parameters increases by one. The
relations that determine the parameters of new tetrahedrons after the oper-
ation (a) (Fig. 4) are similar to the relations in (11) and thus this operation
brings one new parameter up. Let us now prove the same for the operation
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(b). Without loss of generality we can assume that the faces f1, f2 ∈ S̃ ′ of two
selected tetrahedrons as also the newly obtained tetrahedrons are ordered as
in Fig. 5. After the split we have to assure the matching on triangles

T0

T1

T2

T0

T1

T2f1 f2

1 2

→
T0

T0

T2

T0

T0

T2 T1

T1
T2

T1

T1
T2

C D

A B

Fig. 5 A new vertex splits two tetrahedrons into four tetrahedrons.

〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉1 = 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 3 〉A, 〈TTTTTTTTT 0, TTTTTTTTT 2, TTTTTTTTT 3 〉1 = 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 3 〉C ,

〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉2 = 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 3 〉B , 〈TTTTTTTTT 0, TTTTTTTTT 2, TTTTTTTTT 3 〉2 = 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 3 〉D,

〈TTTTTTTTT 0, TTTTTTTTT 2, TTTTTTTTT 3 〉A = 〈TTTTTTTTT 0, TTTTTTTTT 2, TTTTTTTTT 3 〉B , 〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉A = 〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉C ,

〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉B = 〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉D, 〈TTTTTTTTT 0, TTTTTTTTT 2, TTTTTTTTT 3 〉C = 〈TTTTTTTTT 0, TTTTTTTTT 2, TTTTTTTTT 3 〉D.

Using Corollary 1, the number of degrees of freedom increases again by one,

ξξξξξξξξξ(1) =
(
ξ
(1)
0 , ξ

(1)
1 , ξ

(1)
2 , ξ

(1)
3

)
, ξξξξξξξξξ(2) =

(
ξ
(1)
0 , ξ

(2)
1 ,

ξ
(1)
1 ξ

(1)
2

ξ
(2)
1

, ξ
(1)
3

)
,

ξξξξξξξξξ(A) =

(
ξ
(1)
1 , ξ

(A)
1 ,

ξ
(1)
2

ξ
(A)
1

, ξ
(1)
0 ξ

(1)
3

)
, ξξξξξξξξξ(B) =

(
ξ
(2)
1 ,

ξ
(1)
1 ξ

(A)
1

ξ
(2)
1

,
ξ
(1)
2

ξ
(A)
1

, ξ
(1)
0 ξ

(1)
3

)
,

ξξξξξξξξξ(C) =

(
ξ
(1)
0 ξ

(1)
1 , ξ

(A)
1 ,

ξ
(1)
2

ξ
(A)
1

, ξ
(1)
3

)
, ξξξξξξξξξ(D) =

(
ξ
(1)
0 ξ

(2)
1 ,

ξ
(1)
1 ξ

(A)
1

ξ
(2)
1

,
ξ
(1)
2

ξ
(A)
1

, ξ
(1)
3

)
.

The operation (c) splits three tetrahedrons into five tetrahedrons (Fig. 6).
Again without loss of generality we can assume that the triangles f1, f2 and
f3 as also the newly obtained tetrahedrons are ordered as in Fig. 6. We have
now 10 common triangles where the matching has to be assured,

〈TTTTTTTTT 0, TTTTTTTTT 2, TTTTTTTTT 3 〉1 = 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 3 〉A, 〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉1 = 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 3 〉E ,

〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉2 = 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 3 〉D, 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 3 〉3 = 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 3 〉B ,

〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉3 = 〈TTTTTTTTT 0, TTTTTTTTT 1, TTTTTTTTT 3 〉C , 〈TTTTTTTTT 0, TTTTTTTTT 2, TTTTTTTTT 3 〉A = 〈TTTTTTTTT 0, TTTTTTTTT 2, TTTTTTTTT 3 〉B ,

〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉B = 〈TTTTTTTTT 0, TTTTTTTTT 2, TTTTTTTTT 3 〉C , 〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉C = 〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉D,

〈TTTTTTTTT 0, TTTTTTTTT 2, TTTTTTTTT 3 〉D = 〈TTTTTTTTT 0, TTTTTTTTT 2, TTTTTTTTT 3 〉E , 〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉A = 〈TTTTTTTTT 1, TTTTTTTTT 2, TTTTTTTTT 3 〉E ,

and again Corollary 1 proves the desired

ξξξξξξξξξ(1) =
(
ξ
(1)
0 , ξ

(1)
1 , ξ

(1)
2 , ξ

(1)
3

)
, ξξξξξξξξξ(B) =

(
ξ
(3)
0 ,

ξ
(1)
0 ξ

(1)
1 ξ

(A)
1

ξ
(3)
0

,
ξ
(1)
2

ξ
(A)
1

, ξ
(1)
3

)
,

ξξξξξξξξξ(2) =

(
ξ
(1)
0 , ξ

(2)
1 ,

ξ
(1)
1 ξ

(1)
2

ξ
(2)
1

, ξ
(1)
3

)
, ξξξξξξξξξ(C) =

(
ξ
(1)
0 ξ

(2)
1

ξ
(3)
0

,
ξ
(1)
1 ξ

(A)
1

ξ
(2)
1

,
ξ
(1)
2

ξ
(A)
1

, ξ
(3)
0 ξ

(1)
3

)
,
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ξξξξξξξξξ(3) =

(
ξ
(3)
0 ,

ξ
(1)
0 ξ

(2)
1

ξ
(3)
0

,
ξ
(1)
1 ξ

(1)
2

ξ
(2)
1

, ξ
(1)
3

)
, ξξξξξξξξξ(D) =

(
ξ
(2)
1 ,

ξ
(1)
1 ξ

(A)
1

ξ
(2)
1

,
ξ
(1)
2

ξ
(A)
1

, ξ
(1)
0 ξ

(1)
3

)
,

ξξξξξξξξξ(A) =

(
ξ
(1)
0 ξ

(1)
1 , ξ

(A)
1 ,

ξ
(1)
2

ξ
(A)
1

, ξ
(1)
3

)
, ξξξξξξξξξ(E) =

(
ξ
(1)
1 , ξ

(A)
1 ,

ξ
(1)
2

ξ
(A)
1

, ξ
(1)
0 ξ

(1)
3

)
.

Similarly one can verify that all other orderings of the triangles f1, f2 and f3

T0

T1

T2

T0

T1
T2

T0

T1

T2

f1
f2

f3

1

2

3

→
T0

T1 T2

T0

T1

T2

T0 T1

T2

T0
T1

T2

T0

T1

T2

C

D

A B

E

Fig. 6 Three tetrahedrons are replaced with five tetrahedrons.

before the operations (b) and (c) as also the orderings of the newly obtained
tetrahedrons after these operations provide the same results as soon as these
orderings are such that (10) holds for all common triangles. This follows
from the fact that if the latter holds, the lattice on a particular tetrahedron or
triangle is uniquely determined, as soon as it is known on two triangular faces
or edges, respectively. Moreover, there is always possible to order the vertices
of the newly obtained tetrahedrons such that (10) holds for all common
triangles. Indeed, label the newly added vertex by TTTTTTTTT 2 and the interior vertex
of the star by TTTTTTTTT 3 for all new tetrahedrons. Further, label the remaining two
vertices of each of these tetrahedrons by TTTTTTTTT 0 and TTTTTTTTT 1 in the same order as
were on these edges labeled tetrahedrons which were split. ut
We are now able to generalize [4, Theorem 3] from triangulations to the next
important case, i.e., tetrahedral partitions.

Theorem 2 Let T be a regular tetrahedral partition with V vertices. Then
there exists a four-pencil lattice on T which is determined by V parameters.

Proof By Corollary 1 the theorem obviously holds for two tetrahedrons and
by Lemma 1 for a star. Suppose now that the lattice exists on a subpartition
T ′ of the tetrahedral partition T and is determined by V ′ parameters, where
V ′ is the number of vertices of T ′. Now take a vertex TTTTTTTTT at the boundary
of T ′. Our goal is to prove the existence of the lattice on T ′ ∪ S, where
S is a star (interior or boundary in T ) around the vertex TTTTTTTTT . We have to
use the procedure of Lemma 1 for S in such a way that the lattices on T ′
and S will match on S ′ := S ∩ T ′ 6= ∅. Let the inner point of S be labeled
by TTTTTTTTT 3 for all tetrahedrons in S. Since the tetrahedrons in S ′ already have
prescribed order of vertices, we have to use Corollary 2 to reorder these
vertices such that the inner point of S becomes TTTTTTTTT 3 also for all tetrahedrons
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in S ′. This does not change the number of free parameters. Furthermore,
Lemma 1 shows that in order to prove the existence of the lattice on T ′ ∪S,
we only have to find such an ordering of the vertices of tetrahedrons in S\S ′,
that assures (10) for all common triangles in S (the relation (10) already
holds for all common triangles in S ′). Note that if such an ordering exists,
then it can obviously be constructed by the procedure described in Lemma 1.
Let us describe one of the possible orderings of vertices of tetrahedrons in
S\S ′, which satisfies the given requirements. Recall that the inner vertex of
S should be labeled by TTTTTTTTT 3 for all tetrahedrons in S\S ′. Denote the part of
S, where the orderings of the tetrahedrons are already determined, by S̃.
Consider now that S is obtained from S ′ by adding a tetrahedron at a time,
such that the newly added tetrahedron 4 has always at least one and at
most three common triangles with S̃. This can be assured, since T is regular.
The new tetrahedron can have a vertex which is not in S̃. In this case, this
vertex should be labeled by TTTTTTTTT 2. Since the inner vertex of the S is labeled by
TTTTTTTTT 3 for all tetrahedrons in S, the remaining two vertices of the tetrahedron
have to be labeled by TTTTTTTTT 0 and TTTTTTTTT 1 in such a way that (10) holds for a common
triangle. It is obvious that one of both possibilities is appropriate. If, on the
other hand, all vertices of 4 are in S̃, then the vertex which has been added
as the last one has to be labeled by TTTTTTTTT 2. Since the label TTTTTTTTT 3 is reserved for the
inner vertex of S, the remaining two vertices should be labeled by TTTTTTTTT 0 and
TTTTTTTTT 1 such that again (10) holds for all (two or three) common triangles. This
is assured if the vertex that was added the last but one is labeled by TTTTTTTTT 1.
Thus we have ordered the vertices of all tetrahedrons in S in such a way that
(10) is assured for all common triangles. Using Corollary 1 and the fact that
the lattice on a particular tetrahedron or triangle is uniquely determined if
it is already determined on at least two facets, we have proved the existence
of the lattice on T ′ ∪ S. Since T ′ ∩ S = S ′, the number of parameters that
describe the lattice increases exactly by the number of vertices added to the
subpartition T ′. Indeed, for each vertex TTTTTTTTT , TTTTTTTTT /∈ S ′, Corollary 1 brings one
new parameter up. By continuing this process we finally prove the existence
of the lattice on T , which is determined by V parameters. ut
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